Mutant maize offers key to understanding plant growth – Phys.Org

February 13, 2017 From left, normal and mutant maize plants. Credit: UC Riverside

How plant cells divide and how that contributes to plant growth has been one of the longstanding unsolved mysteries of cell biology. Two conflicting ideas have fueled the mystery.

The first idea is that cells divide merely to fill space in plant tissue, and therefore the orientation of the division is unimportant to growth. In other words, the contribution of individual cell behavior to overall growth isn't very important.

The second idea is that individual cells are the basic unit of life and their individual programs eventually build an organism. In other words, each new cell created contributes to proper patterning of the tissue. In this case, the orientation of each cell's division is critical for how the plant tissue is patterned and also impacts growth.

New findings by a University of California, Riverside-led team of researchers, lend support to the second idea, that the orientation of cell division is critical for overall plant growth. The work was just published in the journal Proceedings of the National Academy of Sciences.

The researchers, led by Carolyn Rasmussen, an assistant professor of plant cell biology at UC Riverside and Pablo Martinez, a graduate student working in Rasmussen's lab, together with Anding Luo and Anne Sylvester at University of Wyoming, were working with a maize mutant, called tangled1, with known defects in growth and division plane orientation of cells. Division plane orientation refers to the positioning of new cell walls during division.

They used time-lapse live cell imaging that represented hundreds of hours of maize, (commonly called corn in the United States), cells dividing. The time-lapse of imaging allowed them to characterize a previously unknown delay during cell division stages in the maize mutant. This study clarified the relationship between growth, timely division progression and proper division plane orientation.

This study suggests that delays during division do not necessarily cause growth defects, but that improper placement of new cell walls together with delays during division causes growth defects. Therefore, division plane orientation is a critical but potentially indirect factor for growth.

The findings might have long-term implications for increasing agricultural production. For example, during the Green Revolution of the mid-20th century, researchers developed short-stature, or dwarf, wheat and rice varieties that led to higher yields and are credited with saving over a billion people from starvation. Understanding the molecular mechanisms of plant growth might contribute in the long-term to developing more suitable short-stature maize varieties.

The paper is called "Proper division plane orientation and mitotic progression together allow normal growth of maize."

Explore further: How plant cells regulate growth shown for the first time

More information: Proper division plane orientation and mitotic progression together allow normal growth of maize, PNAS, http://www.pnas.org/cgi/doi/10.1073/pnas.1619252114

Researchers have managed to show how the cells in a plant, a multicellular organism, determine their size and regulate their growth over time. The findings overturn previous theories in the field and are potentially significant ...

Among bacteria, the spirochetes are characterized by their spiral shape and remarkable lengthas much 50 times longer than most other bacteria. This can make cell elongation and division a laborious process. One of those ...

Cell division is a fundamental process of life, producing two cells from one single cell at each cell division. During animal development, a fertilized egg divides many times, increasing the number of cells, which are precisely ...

Researchers at the Institute of Molecular Biotechnology in Vienna have unravelled how a tiny microRNA molecule controls growth and differentiation of brain cells.

Modern genome sequencing methods used to measure the efficiency of synthesis of individual protein during cell division has found that the enzymes that make lipids and membranes were synthesized at much greater efficiency ...

A study conducted by a research team led by Michel Cayouette, Full IRCM Research Professor and Director of the Cellular Neurobiology research unit, in collaboration with a team led by Stphane Angers, Associate Professor ...

A new report from the Stowers Institute for Medical Research chronicles the embryonic origins of planaria, providing new insight into the animal's remarkable regenerative abilities.

How plant cells divide and how that contributes to plant growth has been one of the longstanding unsolved mysteries of cell biology. Two conflicting ideas have fueled the mystery.

Watching the smooth movement generated by hundreds of fish as they swim in unison is truly mesmerising. But it's not only its sheer beauty that makes it so hard to look away, for scientists, it's also the fact that its emergence ...

Recent evidence demonstrates that the origins of photosynthesis can be found in deep sea hydrothermal vents, where microbes evolved to obtain energy from ejected hydrogen sulfide and methane gases. These microbes are capable ...

A new study of songbird dehydration and survival risk during heat waves in the United States desert Southwest suggests that some birds are at risk of lethal dehydration and mass die-offs when water is scarce, and the risk ...

Scientists have discovered a new protein that likely will advance the search for new natural antibiotics, according to a study by Texas A&M AgriLife Research published Feb. 13 in the journal Nature Microbiology.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read this article:
Mutant maize offers key to understanding plant growth - Phys.Org

Related Posts