Scientists reveal a new mechanism mediating environment-microbe-host interactions – Phys.Org

April 24, 2017 Dr. Meng Wang is an associate professor of the Huffington Center On Aging at Baylor College of Medicine. Credit: Baylor College of Medicine

Researchers at Baylor College of Medicine have uncovered a new mechanism showing how microbes can alter the physiology of the organisms in which they live. In a paper published in Nature Cell Biology, the researchers reveal how microbes living inside the laboratory worm C. elegans respond to environmental changes and generate signals to the worm that alter the way it stores lipids.

"Microbe-host interactions have been known for a long time, but the actual molecular mechanisms that mediate the interactions were largely unknown," said senior author Dr. Meng Wang, associate professor of molecular and human genetics at Baylor and the Huffington Center On Aging. "Microbes living inside another organism, the host, can respond to changes in the environment, change the molecules they produce and consequently influence the normal workings of the host's body, including disease susceptibility."

In this study, Wang and first author Dr. Chih-Chun Lin working in the Wang Lab have dissected for the first time a molecular mechanism by which E. coli bacteria can regulate C. elegans' lipid storage.

How E. coli changes lipid storage in C. elegans

C. elegans is a laboratory worm model scientists use to study basic biological mechanisms in health and disease.

"This worm naturally consumes and lives with bacteria in its gut and interacts with them in ways that are similar to those between humans and microbes. In the laboratory, we can study basic biological mechanisms by controlling the type of bacteria living inside this worm as well as other variables and then determining the effect on the worm's physiology," Wang said.

In this study, Wang and Lin compared two groups of worms. One group received bacteria that had been grown in a nutritionally rich environment. The other group of worms received the same type of bacteria, but it had grown in nutritionally poor conditions. Both groups of worms received the same amount and type of nutrients, the only difference was the type of environment in which the bacteria had grown before they were administered to the worms.

Interestingly, the worms carrying bacteria that came from a nutritionally poor environment had in their bodies twice the amount of fat present in the worms living with the bacteria coming from the nutritionally rich environment.

The researchers then carried out more experiments and determined that it was the lack of the amino acid methionine in the nutritionally poor environment that had triggered the bacteria to adapt by producing different compounds that then initiated a cascade of events in the worm that led to extra fat accumulation. In addition, the researchers observed that the tissues showing extra fat accumulation also had their mitochondria fragmented. The activities of the mitochondria, the balance between their fusion and breaking apart, are known to be tightly coupled with metabolic activities.

A mechanism that reveals unsuspected connections

The researchers found that the bacteria were able to trigger mitochondrial fragmentation and then extra lipid accumulation because the molecular intermediates the bacteria had triggered allowed them to 'establish communication' with the mitochondria.

"We have found evidence for the first time that bacteria and mitochondria can 'talk to each other' at the metabolic level," Wang said.

Bacteria and mitochondria are like distant relatives. Evolutionary evidence strongly suggests that mitochondria descend from bacteria that entered other cell types and became incorporated into their structure. Mitochondria play essential roles in many aspects of the cell's metabolism, but also maintain genes very similar to those of their bacterial ancestors.

"It's interesting that the molecules bacteria generate can chime in the communication between mitochondria and regulate their fusion-fission balance," Wang said. "Our findings reveal this kind of common language between bacteria and mitochondria, despite them being evolutionary distant from each other."

Some components of this common language involve proteins such as NR5A, Patched and Sonic Hedgehog. The latter is of particular interest to the researchers because it has not been involved in regulating lipid metabolism and mitochondrial dynamics before.

"Microbes in the microbiome can affect many aspects of their host's functions, and here we present a new molecular mechanism mediating microbe-host communication," Wang said. "Having discovered one mechanism encourages us to investigate others that may be related to other physiological aspects, such as the stress response and aging, among others."

Explore further: How gut bacteria change cancer drug activity

More information: Microbial metabolites regulate host lipid metabolism through NR5AHedgehog signalling, Nature Cell Biology (2017). nature.com/articles/doi:10.1038/ncb3515

The activity of cancer drugs changes depending on the types of microbes living in the gut, according to a UCL-led study into how nematode worms and their microbes process drugs and nutrients.

The billions of microorganisms living within the human digestive tract appear to play a significant role in health and disease, notably metabolic syndrome, autoimmune disorders and diabetes but how these organisms do ...

Filarial nematodesmicroscopic, thread-like roundwormscurrently infect up to 54 million people worldwide and are the leading cause of disability in the developing world. Now, researchers reporting in PLOS Neglected Tropical ...

Within the human digestive tract, there are trillions of bacteria, and these communities contain hundreds or even thousands of species. The makeup of those populations can vary greatly from one person to another, depending ...

A common roundworm widely studied for its developmental biology and neuroscience, also might be one of the most surprising examples of the eat-local movement. Princeton University researchers have found that the organisms ...

To survive in human cells, chlamydiae have a lot of tricks in store. Researchers of the University of Wrzburg have now discovered that the bacterial pathogens also manipulate the cells' energy suppliers in the process.

The function of a plant's roots go well beyond simply serving as an anchor in the ground. The roots act as the plant's mouth, absorbing, storing and channeling water and nutrients essential for survival.

Fossils accidentally discovered in South Africa are probably the oldest fungi ever found by a margin of 1.2 billion years, rewriting the evolutionary story of these organisms which are neither flora nor fauna, researchers ...

The bacteria residing in your digestive tract, or your gut microbiota, may play an important role in your ability to respond to chemotherapy drugs in the clinic, according to a new study by scientists at the University of ...

Two years ago, the Zika virus drew attention to microcephaly, a developmental disorder in which the brain and skull display inhibited growth. But there are other causes of microcephaly, such as congenital genetic diseases. ...

Researchers at Baylor College of Medicine have uncovered a new mechanism showing how microbes can alter the physiology of the organisms in which they live. In a paper published in Nature Cell Biology, the researchers reveal ...

The ants of the genus Sericomyrmex - literally translated as 'silky ants' - belong to the fungus-farming ants, a group of ants that have figured out how to farm their own food. The silky ants are the less well-known relatives ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the article here:
Scientists reveal a new mechanism mediating environment-microbe-host interactions - Phys.Org

Related Posts