Disentangling chloroplast genetics: Scientists isolate a critical gene … – Phys.Org

May 11, 2017 Japanese scientist have isolated and characterized a protein in chloroplasts that is essential for proper nucleoid segregation. Credit: Kyoto University

Proper DNA inheritance is essential for healthy cell growth and division. The same goes for the genetic material found in chloroplasts: the energy centers of all plant cells.

Chloroplast genomeslikely vestiges of ancestral bacteriaare organized into DNA-protein complexes called nucleoids. While significant work has been done to understand the dynamics of DNA in the nuclei of plant cells, little is known about the dynamics of chloroplast nucleoids.

Now Yusuke Kobayashi and Yoshiki Nishimura of Kyoto University, Osami Misumi of Yamaguchi University, and other collaborators have isolated and characterized a protein in chloroplasts that is essential for proper nucleoid segregation. Their findings were published recently in the journal Science.

"To understand the dynamics of chloroplast nucleoids, we focused on their behavior during chloroplast division in the green alga Chlamydomonas reinhardtii," explains Nishimura.

"We screened about 6,000 specimens with random mutations in their DNA and then isolated the ones with defective nucleoid segregation."

One of these mutants was found to have a defect in a gene the team calls moc1, for "Monokaryotic Chloroplast 1". The chloroplasts in this mutant possessed only a single nucleoid, and showed unequal segregation during chloroplast division. A homologous moc1 gene was then found in a land plant commonly used for research, Arabidopsis thaliana. When mutated, the researchers discovered that these organisms exhibit growth defects and abnormal nucleoid segregation.

After extensive analysis of this new gene, the team discovered that moc1 functions as a chloroplast-specific 'Holliday junction resolvase', which Nishimura continues, "is very important in untangling a DNA structure called Holliday junctions. These genes have never been found in chloroplasts, until now."

Continuing with their study, the researchers successfully visualized the activity of moc1 on Holliday junctions through the use of high-speed atomic force microscopy and DNA origami technology. They observed moc1 binding to the core of Holliday junctions and cutting them symmetrically.

The team's discovery improves understanding of the highly complex structures maintaining chloroplast DNA, whose proper functioning is essential for good cell health.

Explore further: A mutation giving leaves with white spots has been identified

More information: "Holliday junction resolvases mediate chloroplast nucleoid segregation" Science (2017). science.sciencemag.org/cgi/doi/10.1126/science.aan0038

Journal reference: Science

Provided by: Kyoto University

Garden and potted plants with white spots on their leaves are so popular that they are specially selected for this feature. An international research team has now identified a new mutation in the plant Lotus japonicus which ...

Researchers of Kumamoto University in Japan have succeeded in the world's first visualization of a peptidoglycan 'wall' present in the chloroplasts of bryophytes (moss plants). Until now, chloroplasts of green plants were ...

Researchers at Ruhr-Universitt Bochum have analysed how green algae manufacture complex components of a hydrogen-producing enzyme. The enzyme, known as the hydrogenase, may be relevant for the biotechnological production ...

Researchers at Tohoku University have identified a previously uncharacterized type of autophagy, during which an autophagic process termed chlorophagy removes collapsed chloroplasts in plant leaves. The findings could lead ...

Green algae and higher plants both harbor specialized cell organelles the chloroplasts in which photosynthesis takes place. This process allows these organisms to utilize energy from sunlight to power their biochemical ...

The discovery of a new gene is helping researchers at Michigan State University envision more-efficient molecular factories of the future.

University of Dundee scientists have solved a mystery concerning one of the most fundamental processes in cell biology, in a new discovery that they hope may help to tackle cancer one day.

Leading hospital "superbugs," known as the enterococci, arose from an ancestor that dates back 450 million yearsabout the time when animals were first crawling onto land (and well before the age of dinosaurs), according ...

A recent research paper in the Journal of Heredity reveals that there are three sub-species of snow leopard. Until now, researchers had assumed this species, Panthera uncia, was monotypic.

Adult stem cells have the ability to transform into many types of cells, but tracing the path individual stem cells follow as they mature and identifying the molecules that trigger these fateful decisions are difficult in ...

In their quest to replicate themselves, viruses have gotten awfully good at tricking human cells into pumping out viral proteins. That's why scientists have been working to use viruses as forces for good: to deliver useful ...

A UCLA study has found that a common strain of Caenorhabditis elegansa type of roundworm frequently used in laboratory research on neural developmenthas a pair of genes that encode both a poison and its antidote. The ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Go here to read the rest:
Disentangling chloroplast genetics: Scientists isolate a critical gene ... - Phys.Org

Related Posts