PUBLISHED: 18:49 12 July 2017 | UPDATED: 18:52 12 July 2017
Paul Brackley
Simon Bullock, cell biology group leader at the MRC LMB in Cambridge, in the fly lab preparing for an open day
ILIFFE
Email this article to a friend
To send a link to this page you must be logged in.
Our cells may be tiny but they are a hive of activity.
Simon Bullock, at the MRC Laboratory of Molecular Biology in Cambridge, is studying what is going on within them.
The department I work in, the cell biology division, is trying to understand how cells and tissues are organised, and there is also a strong interest in how those processes go wrong in human disease, he says.
My research team works on how components are transported within cells by tiny machines called motor proteins. These proteins can walk along tracks within the cell, dragging associated cargo as they go, Simon explains.
Its the cellular equivalent of a railway system, sorting different components to the right places at the right times. This transport process operates in all cells but is particularly important in our nerve cells. Thats because these cells, called neurons, stretch over long distances and consequently rely on a very efficient haulage system within them.
The components being transported are many and various but Simons team have dedicated most of their time to exploring the sorting of ribonucleic acid molecules. These RNAs convey the genetic code in our DNA to another type of machine that reads the code and produces specific proteins from it.
Weve really focused on understanding how these RNAs are targeted to different regions of the cell by motor proteins because that dictates where a protein is made and functions, says Simon.
But the transport system we are studying is important for many other processes in cells. For example, different compartments of the cell need to exchange materials, and this is often done by small membrane-bound structures called vesicles. These vesicles are also moved through the cell by motor proteins.
Moving components around cells by motor proteins, which can take up to 100 steps per second along the track, is much more efficient than having them float around the inside of our cells until they reach their destination.
Each cell has a structure which we call the cytoskeleton, says Simon. Its made up of different types of filaments. As well as providing structural support for the cell, the filaments are used as tracks for the motors.
There are different types of tracks in our cellular railway system some are the equivalent of an inter-city route while others are more akin to a local branch line.
Microtubules are one of the types of tracks. They are used for most long-distance transport in animal cells.
The other kind of track is actin, which is very important in cells for a number of processes. In terms of transport, actin is mostly used for short-distance delivery after cargo has left the microtubules, explains Simon.
The microtubules are hollow tubes, and the motor proteins move along the outside of them.
Some of the motors step in a hand-over-hand fashion, moving in a straight path along one part of the tube. Others appear to have a more chaotic walk, which might allow them to move around obstacles in their path, Simon adds.
While this transport system is essential for normal cell functioning, unfortunately for us it can also be used by some very unpleasant hitchhikers.
We know that the motor proteins in our cells are not just important for trafficking our own cellular components, they are also hijacked by viruses like HIV, rabies and herpes. The viruses have evolved a way to stick to the motors, because this helps them get to where they need to be in the cell, for instance to replicate, says Simon.
One potential long-term benefit of research on motor proteins is that we might have a better understanding of how to block the viral proteins binding to them and thus combat infection.
Viruses can evolve very quickly to prevent a drug binding but this is less of an issue when the virus must preserve the target site in order to interact with a motor in the cell.
Work on motors might also shed light on what goes wrong in neurodegenerative diseases.
One of the earliest things that appears to go wrong in neurodegenerative diseases is transport of cargo along microtubules. It has been speculated that stimulating the transport process could alleviate some of the problems associated with neurodegeneration, says Simon.
However, we are really at the early stages of trying to understand the basic biology of how transport processes work, and translating the results into medicines will be challenging and take a long time.
Simons team use a range of techniques to study the basic biology of transport processes. One line of research involves fruit flies, which can have their genes changed very quickly and easily.
We have been doing a lot of imaging of the cells of fruit flies, says Simon. Part of that has involved labelling cargoes to make them fluorescent, which includes using a protein initially identified in jellyfish by other researchers. We fuse the fluorescent protein to the cargo and then we can use our microscopes to watch it being moved by motors with the cell.
Simons colleagues at the MRC Laboratory of Molecular Biology have also made use of the institutes 5million cryo-electron microscopes to help them put together the first complete 3D model of one of these tiny motors, known as dynein.
This family of motor proteins move along microtubules to transport cargoes, including proteins and RNAs, to different parts of our cells.
Dynein is also known to be involved with many diseases, including viral infections.
Andrew Carters group in the LMBs structural studies division collaborated with Alexander Birds group at the Max Planck Institute in Dortmund on the work.
On its own, dynein does not move for long distances it acts like a train with its brakes on. But once bound to a protein complex called dynactin and proteins on the cargo, it forms a formidable transport machine capable of taking thousands of steps without stopping. Disrupting this process can cause defects in the formation of the brain, leading to learning disabilities or certain forms of epilepsy. The work by Andrew and his colleagues shows how dynein is held in an inactive state and how it is triggered to move only after the cargo is loaded.
Research at the taxpayer-funded Medical Research Council facility is driven by a remit to improve our understanding of human biology and the lab, which last month attracted 2,000 people to an open day at its Cambridge Biomedical Campus home, has an incredible 10 Nobel Prizes to its name.
A lot of major scientific discoveries have been driven by curiosity, observes Simon. People often didnt set out to make a specific discovery but they followed their interests. They saw something unexpected and that led to a completely new line of research. Curiosity-driven research continues to be really important.
Nonetheless, the benefits of translating this research into treatments through collaborating with pharmaceutical companies are clear. With AstraZeneca building its global HQ and R&D facility over the road from the LMB, the opportunities for collaboration will only increase. LMB and AstraZeneca have already been collaborating closely on some projects, as the Cambridge Independent has reported.
I think having AstraZeneca as our neighbours will be fantastic, says Simon. The expertise at AstraZeneca and LMB are highly complementary and there is lots of room for synergy.
Bringing microscopic life into our schools to inspire pupils
Simon Bullock was drawn into biology as a teenager by what he observed when he peered down a microscope.
Rather than learning details of how biochemical reactions work, it was seeing a water fleas heartbeat that really got me hooked. And I still love looking down a microscope in my work, he says.
Simon and colleagues at the MRC Laboratory of Molecular Biology have developed a project that aims to offer younger children the opportunity to be amazed by life at a microscopic level.
Microscopes4Schools is a hands-on science outreach activity for primary school children, now led by Mathias Pasche and delivered by volunteer scientists from the LMB.
They visit local schools to provide a short interactive talk about cells and microscopy, which is followed by a practical hands-on session where pupils can use high-quality educational microscopes to look at different biological samples such as banana cells, water fleas and even their own cheek cells.
Its about giving children an experience that could spark an interest in science, said Simon.
A basic microscope can cost 40, while a higher-quality one will set you back about 300. Budgetary pressures mean that many pupils dont otherwise get to use a microscope until they are in secondary school or sixth-form although parents can inspire their children if they have a microscope at home.
Things that are moving are great for children, said Simon. In summer you can get some pond water and see a lot of life. You can also look at bacteria in yoghurt, or pond weed from an aquarium.
You can find out more about Microscopes4Schools and find valuable resources on experiments on the Microscopes4Schools website.
Go here to read the rest:
How Cambridge scientists are exploring the incredible transport system inside our cells - Cambridge Independent (registration)
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]