The human brain is routinely described as the most complex object in the known universe. It might therefore seem unlikely that pea-size blobs of brain cells growing in laboratory dishes could be more than fleetingly useful to neuroscientists. Nevertheless, many investigators are now excitedly cultivating these curious biological systems, formally called cerebral organoids and less formally known as mini-brains. With organoids, researchers can run experiments on how living human brains developexperiments that would be impossible (or unthinkable) with the real thing.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
The cerebral organoids in existence today fall far short of earning the brain label, mini or otherwise. But a trio of recent publications suggests that cerebral-organoid science may be turning a cornerand that the future of such brain studies may depend less on trying to create tiny perfect replicas of whole brains and more on creating highly replicable modules of developing brain parts that can be snapped together like building blocks. Just as interchangeable parts helped make mass production and the Industrial Revolution possible, organoids that have consistent qualities and can be combined as needed may help to speed a revolution in understanding how the human brain develops.
In 2013 Madeline Lancaster, then of the Austrian Academy of Sciences, created the first true cerebral organoids when she discovered that stem cells growing in a supportive gel could form small spherical masses of organized, functioning brain tissue. Veritable colleges of mini-brains were soon thriving under various protocols in laboratories around the world.
Much to the frustration of impatient experimentalists, however, the mini-brains similarity to the real thing only went so far. Their shrunken anatomies were distorted; they lacked blood vessels and layers of tissue; neurons were present but important glial cells that make up the supportive white matter of the brain were often missing.
Worst of all was the organoids inconsistency: They differed too much from one another. According to Arnold Kriegstein, director of the developmental and stem cell biology program at the University of California, San Francisco, it was difficult to get organoids to turn out uniformly even when scientists used the same growth protocol and the same starting materials. And this makes it very difficult to have a properly controlled experiment or to even make valid conclusions, he explained.
Researchers could reduce the troublesome variability by treating early-stage organoids with growth factors that would make them differentiate more consistently as a less varied set of neurons. But that consistency would come at the expense of relevance, because real brain networks are a functional quilt of cell typessome of which arise in place while others migrate from other brain regions.
For example, in the human cortex, about 20 percent of the neuronsthe ones called interneurons, which have inhibitory effectsmigrate there from a center deeper down in the brain called the medial ganglionic eminence (MGE). An oversimplified organoid model for the cortex would be missing all those interneurons and would therefore be useless for studying how the developing brain balances its excitatory and inhibitory signals.
A stained cross section through one of the cortical organoids created by researchers at the Yale Stem Cell Center shows the organization of various cell types into layers of tissue. The organoid is 40 days old in this image. The blue dots are cell nuclei; the red patches are progenitor cells for neurons; the green patches are differentiated neurons.
Courtesy of Yangfei Xiang
Deliverance from those problems may have arrived with recent results from three groups. They point toward the possibility of an almost modular approach to building mini-brains, which involves growing relatively simple organoids representative of different developing brain regions and then allowing them to connect with one another.
The most recent of those results was announced two weeks ago in Cell Stem Cell by a group based at the Yale Stem Cell Center. In the first stage of their experiments, they used human pluripotent stem cells (some derived from blood, others from embryos) to create separate organoid replicas of the cortex and MGE. The researchers then let mixed pairs of the ball-shaped organoids grow side by side. Over several weeks, the pairs of organoids fused. Most important, the Yale team saw that, in keeping with proper brain development, inhibitory interneurons from the MGE organoid migrated into the cortical organoid mass and began to integrate themselves into the neural networks there, exactly as they do in the developing fetal brain.
Earlier this year, teams from the Stanford University School of Medicine and the Austrian Academy of Sciences published reports on similar experiments in which they too developed cortical and MGE organoids and then fused them. The three studies differ significantly in their detailssuch as how the researchers coaxed stem cells to become organoids, how they nurtured the growing organoids, and what tests they ran on the derived cells. But they all found that the fused organoids yielded neural networks with a lifelike mix of excitatory neurons, inhibitory neurons and supporting cells, and that they could be developed more reliably than the older types of mini-brain organoids.
To Kriegstein, all three experiments beautifully illustrate that the cells in organoids will readily transform into mature, healthy tissue if given the opportunity. Once you coax the tissue down a particular developmental trajectory, it actually manages to get there very well on its own with minimal instruction, he said. He believes that specialized organoids could bring a new level of experimental control to neuroscientists explorations: Scientists could probe different brain organoids for information about development within subregions of the brain and then use that combined or fused platform to study how these cells interact once they start migrating and encountering each other.
In-Hyun Park, an associate professor of genetics who led the Yale study, is hopeful that organoids might already be useful in preliminary investigations of the developmental roots of certain neuropsychiatric conditions, such as autism and schizophrenia. Evidence suggests that in these conditions, Park said, there seems to be an imbalance between excitatory and inhibitory neural activity. So those diseases can be studied using the current model that weve developed.
Kriegstein cautions, however, that no one should rush to find clinical significance in organoid experiments. What we really lack is a gold standard of human brain development to calibrate how well these organoids are mimicking the normal condition, he said.
Whatever applications organoid research may eventually find, the essential next steps will consist of learning how to produce organoids that are even more true to life, according to Park. He has also not given up hope that it will eventually be possible to create a mini-brain in the laboratory that is a more complete and accurate stand-in for what grows in our head. Maybe doing so will involve a more complex fusion of organoid subunits, or maybe it will demand a more sophisticated use of growth media and chemicals for directing the organoid through its embryonic stages. There should be an approach to generating a human brain organoid that is composed of forebrain plus midbrain plus hindbrain all together, Park said.
Jordana Cepelewicz contributed reporting to this article.
Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.
Continue reading here:
Lego-Like Brain Balls Could Build a Living Replica of Your Noggin - WIRED
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]