Genetics | The Institute for Creation Research

For over 150 years, Darwins hypothesis that all species share a common ancestor has dominated the creation-evolution debate. Surprisingly, when Darwin wrote his seminal work, he had no direct evidence for these genealogical relationships. Now, with online databases full of DNA-sequence information from thousands of species, the direct testing of Darwins hypothesis has finally commenced. More...

Authentic speciation is a process whereby organisms diversify within the boundaries of their gene pools, and this can result in variants with specific ecological adaptability. While it was once thought that this process was strictly facilitated by DNA sequence variability, Darwin's classic example of speciation in finches now includes a surprisingly strong epigenetic component as well. More...

One of the rapidly expanding and exciting research fields in molecular biology is the area of epigenetics. In the study of epigenetic modifications, scientists analyze DNA that has been modified in such a way that its chemistry is changed, but not the actual base pairs that make up the genetic code of the sequence. Its like a separate control code and system imposed upon and within the standard code of DNA sequence.

Because epigenetic modifications in the genome are related to gene expression, researchers have been using highly advanced technologies for comparing these differences in humans and chimps for regions of the genome that they both have in common. More... More...

Living things develop partly according to genetic instructions encoded on their DNA. The study of inheritance has widened the paradigms from genes to genomes, and now recent research indicates that critical biological information is carried from one generation to the next in systems additional to DNA, called epigenetic factors.

So, where did this information come from? More...

Genes could be thought of as brick molds, used to construct materials for building the physical structures of living organisms. They carry the codes to help make proteins, which then make up different cells that are combined together to form mega-structures called tissues.

New research has shed more light on how genes are used by cells to build the different tissues needed by complex living creatures. More...

Indiana University researchers discovered that certain genes used in developing horned beetle larvae are re-used later to make horns in their adult stage. The studys authors called the genes co-opted, indicating their belief that evolution decided to give them a secondary use. The authors suggestion that gene co-opting offers a possible explanation for the development of novel traits comes up short, however. More...

One of the past arguments for evidence of biological evolution in the genome has been the concept of pseudogenes. These DNA sequences were once thought to be the defunct remnants of genes, representing nothing but genomic fossils in the genomes of plants and animals. More...

Amazingly, scientists documented the activity of 2,082 distinct pseudogenes in the human genome whose aberrant levels of activity were directly associated with cancer-specific pathologies. More...

Proteins do most of the required metabolic tasks within each of the trillions of cells in the human body. However, only about four percent of human DNA contains coded instructions that specify proteins.

So what is the purpose of the remaining 96 or so percent? More...

A research team recently characterized a group of genes in humans and other mammals that not only defies evolutionary models but vindicates the Bibles prediction of the uniqueness of created kinds with distinct genetic features. More...

Read more:
Genetics | The Institute for Creation Research

Related Posts