GammaDelta Therapeutics is a company that focusses on utilizing the unique properties of gamma delta () T cells to develop novel immunotherapies for patients.Through their research, the companys scientists have discovered a number of targets and antibodies that have the potential to modulate the activity of T-cells in situ. Therefore, GammaDelta Therapeutics recently announced the formation of Adaptate Biotherapeutics, a spin-out company that will focus on research in this area.
Technology Networks spoke with Natalie Mount, CEO of Adaptate BioTherapeutics, to learn more about the company's aims and the challenges faced when developing immunotherapies and advancing them into clinical studies.
Molly Campbell (MC) Please can you tell us more about T-cell based cell therapy products and their potential applications?Natalie Mount (NM): T cells play an increasingly appreciated critical role in immune surveillance, being able to recognize malignant/transformed cells through a pattern of stress markers. The recognition mechanism is not major histocompatibility complex (MHC) restricted and not dependent on a single antigen.
T cells therefore have potential in a range of disease indications, including both hematological and solid malignancies and a positive correlation between T cell infiltration and prognosis/survival in patients has been determined in a range of oncology indications in studies published in the literature by other groups. Additionally, as a cell therapy, T cells can be used in an allogeneic setting (ie, T cells can be used for unrelated recipients without a requirement for matching).
Both Adaptate Biotherapeutics and GammaDelta Therapeutics are focussed on harnessing the potential of T cells, in particular the V1 subtype which is the predominant T cell type in tissue.This is based on data originating from the labs of Professor Adrian Hayday of Kings College London and the Crick Institute, supported by Cancer Research Technology and also from Professor Bruno Silva Santos of Institute for Molecular Medicine at the University of Lisbon, Portugal.
Previous clinical trials conducted by other groups/companies targeting or using T cells in cancer have focussed on the V2 subtype which is predominant in the blood. These trials have demonstrated safety, but efficacy has been limited.Compared to V2 cells, V1 cells, which are the focus of work at Adaptate Biotherapeutics and GammaDelta Therapeutics, are less susceptible to exhaustion and activation induced cell death. Expansion of donor derived V1 has been shown to be a positive prognostic indicator for acute myeloid leukemia patients following hematopoietic stem cell transplant.
MC: Why are current immunotherapy treatment approaches limited?NM: Immunotherapy approaches have had very significant success and impact in Oncology recently, however, challenges and unmet needs remain.One challenge is effective treatment of solid tumors. The hypoxic, low nutrient tumor environment provides a challenge for successful infiltration and activation of T cells. However, V1 T cells have real potential as they are naturally tissue resident and hence primed for this environment. In addition, their ability to recognize malignant cells by a pattern of markers expressed by dysregulated, transformed cells rather than one specific antigen presented by the MHC provides an additional advantage for both specificity of response and maintenance of efficacy.
T cells act as orchestrators of an immune response and, following recognition of a cell as malignant, they induce maturation of monocytes and signal to alpha beta T cells, hence increasing immunogenicity of the tumor and providing a sustained response, with potential even in tumors with low mutational load which have proven challenging with other immunotherapies.
MC: The new spin-out company, Adaptate Biotherapeutics, will build on GammaDelta's knowledge to modulate T-cell activity using therapeutic antibodies. Why have you decided to create a spin-out focusing on this area of research?NM: GammaDelta Therapeutics was formed in 2016 to harness the unique properties of T cells, and since then has gained extensive knowledge of T-cell biology. In addition to gaining insight into cell growth and isolation, the companys scientists have also discovered a number of targets and antibodies that have potential to modulate the activity of T-cells in situ.
GammaDelta Therapeutics now has a pipeline of cell therapy products progressing into clinical development under the guidance of CEO, Dr Paolo Paoletti.
Adaptate Biotherapeutics will be developing antibodies which will be administered to cancer patients to modulate activity of the patient's gamma delta T cells in situ.
Delivery of cell therapy and antibody therapeutics each needs focus and specific skillsets and formation of two independent entities will facilitate this. The two companies share a common goal to harness the potential of T cells to bring effective therapies to patients. Both benefit from support of the scientific founding team and have common investors, Abingworth and Takeda Pharmaceuticals.MC; Your goal is to develop targets and antibodies that can modulate the activity of T-cells and advance them into clinical studies. What challenges exist here, and how do you hope to overcome them?
Our assets at Adaptate Biotherapeutics are currently at the pre-clinical stage and therefore face the non-clinical development risks for a novel therapy. However, these risks are mitigated by biology understanding from our scientific founders and the work at GammaDelta Therapeutics to date.
One of our challenges is in selecting the most suitable patient population for initial trials. There is potential for opportunity for our therapeutics in multiple indications but the utility of animal models in modelling the human immune compartment and human tumor setting is limited. Therefore in vitro and ex vivo models are important, in addition to the learnings from other clinical studies.
MC: GammaDelta Therapeutics formed in 2016 to gain extensive knowledge of T-cell biology and to developing a portfolio of investigational cell therapies. Some of these cell therapies are poised to enter clinical development. Can you tell us any further information about these therapies?NM: GammaDelta was set up to develop cell-based therapy utilizing ex-vivo expanded tissue resident gd T cells. Subsequent acquisition of Lymphact SAS allowed GammaDelta to augment its capabilities with a platform for ex-vivo expansion of blood derived V1 cells. GammaDelta is focussed on progressing ex-vivo expanded skin and blood derived V1 cells to the clinic both in unengineered and engineered formats. Clinical trials are currently on track to commence in the next 12-18 months.
MC: Your press release states: "The two companies will continue sharing their insights into T-cell biology as they work towards developing different therapeutic modalities". How will you continue to share insights here?NM: Antibodies and cells represent complementary approaches to realizing the potential of T cell activity for patients with solid and haematological malignancies.
The two companies will work together in areas of common interest in the biology of these fascinating cells, such as understanding the phenotype and behavior of T cells in tumors and mechanisms of cell regulation as well as the effects of antibody on the T cells.
We have deliberately established a contractual framework that allows efficient collaboration between scientists of both the companies via formal and informal meetings.
MC: What are your hopes for the future of Adaptate Biotherapeutics?NM: This is a remarkable time in the development of new immune therapies, and the role of "non-conventional" cell types of the immune system is coming to the fore as we recognize the successes achieved to date and the needs of patients and related scientific challenges that remain.
Both GammaDelta Therapeutics and Adaptate Biotherapeutics are at the lead of translating our increasing understanding of T cell biology and its potential into therapies to address these unmet needs.
Adaptate Biotherapeutics has a fantastic opportunity to build and accelerate a portfolio of antibody-based approaches in this novel area and I look forward to the successful translation of this science into therapies with the support of our investors at Abingworth and Takeda Pharmaceuticals.
Dr Natalie Mount, CEO of Adaptate Biotherapeutics was speaking with Molly Campbell, Science Writer, Technology Networks.
The rest is here:
Harnessing Gamma T Cells To Bring Effective Therapies to Patients - Technology Networks
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]