Image credit: Depositphotos
Two separate studies, one by UK-based artificial intelligence lab DeepMind and the other by researchers in Germany and Greece, display the fascinating relations between AI and neuroscience.
As most scientists will tell you, we are still decades away from building artificial general intelligence, machines that can solve problems as efficiently as humans. On the path to creating general AI, the human brain, arguably the most complex creation of nature, is the best guide we have.
Advances in neuroscience, the study of nervous systems, provide interesting insights into how the brain works, a key component for developing better AI systems. Reciprocally, the development of better AI systems can help drive neuroscience forward and further unlock the secrets of the brain.
For instance, convolutional neural networks (CNN), one of the key contributors to recent advances in artificial intelligence, are largely inspired by neuroscience research on the visual cortex. On the other hand, neuroscientist leverage AI algorithms to study millions of signals from the brain and find patterns that would have gone. The two fields are closely related and their synergies produce very interesting results.
Recent discoveries in neuroscience show what were doing right in AI, and what weve got wrong.
A recent study by researchers at DeepMind prove that AI research (at least part of it) is headed in the right direction.
Thanks to neuroscience, we know that one of the basic mechanisms through which humans and animals learn is rewards and punishments. Positive outcomes encourage us to repeat certain tasks (do sports, study for exams, etc.) while negative results detract us from repeating mistakes (touch a hot stove).
The reward and punishment mechanism is best known by the experiments of Russian physiologist Ivan Pavlov, who trained dogs to expect food whenever they hear a bell. We also know that dopamine, a neurotransmitter chemical produced in the midbrain, plays a great role in regulating the reward functions of the brain.
Reinforcement learning, one of the hottest areas of artificial intelligence research, has been roughly fashioned after the reward/punishment mechanism of the brain. In RL, an AI agent is set to explore a problem space and try different actions. For each action it performs, the agent receives a numerical reward or penalty. Through massive trial and error and by examining the outcome of its actions, the AI agent develops a mathematical model optimized to maximize rewards and avoiding penalties. (In reality, its a bit more complicated and involves dealing with exploration and exploitation and other challenges.)
More recently, AI researchers have been focusing on distributional reinforcement learning to create better models. The basic idea behind distributional RL is to use multiple factors to predict rewards and punishments in a spectrum of optimistic and pessimistic ways. Distributional reinforcement learning has been pivotal in creating AI agents that are more resilient to changes in their environments.
The new research, jointly done by Harvard University and DeepMind and published in Nature last week, has found properties in the brain of mice that are very similar to those of distributional reinforcement learning. The AI researchers measured dopamine firing rates in the brain to examine the variance in reward prediction rates of biological neurons.
Interestingly, the same optimism and pessimism mechanism that AI scientists had programmed in distributional reinforcement learning models was found in the nervous system of mice. In summary, we found that dopamine neurons in the brain were each tuned to different levels of pessimism or optimism, DeepMinds researchers wrote in a blog post published on the AI labs website. In artificial reinforcement learning systems, this diverse tuning creates a richer training signal that greatly speeds learning in neural networks, and we speculate that the brain might use it for the same reason.
What makes this finding special is that while AI research usually takes inspiration from neuroscience discovery, in this case, neuroscience research has validated AI discoveries. It gives us increased confidence that AI research is on the right track, since this algorithm is already being used in the most intelligent entity were aware of: the brain, the researchers write.
It will also lay the groundwork for further research in neuroscience, which will, in turn, benefit the field of AI.
While DeepMinds new findings confirmed the work done in AI reinforcement learning research, another research by scientists in Berlin, this time published in Science in early January, proves that some of the fundamental assumptions we made about the brain are quite wrong.
The general belief about the structure of the brain is that neurons, the basic component of the nervous system are simple integrators that calculate the weighted sum of their inputs. Artificial neural networks, a popular type of machine learning algorithm, have been designed based on this belief.
Alone, an artificial neuron performs a very simple operation. It takes several inputs, multiplies them by predefined weights, sums them and runs them through an activation function. But when connecting thousands and millions (and billions) of artificial neurons in multiple layers, you obtain a very flexible mathematical function that can solve complex problems such as detecting objects in images or transcribing speech.
Multi-layered networks of artificial neurons, generally called deep neural networks, are the main drive behind the deep learning revolution in the past decade.
But the general perception of biological neurons being dumb calculators of basic math is overly simplistic. The recent findings of the German researchers, which were later corroborated by neuroscientists at a lab in Greece, proved that single neurons can perform XOR operations, a premise that was rejected by AI pioneers such as Marvin Minsky and Seymour Papert.
While not all neurons have this capability, the implications of the finding are significant. For instance, it might mean that a single neuron might contain a deep network within itself. Konrad Kording, a computational neuroscientist at the University of Pennsylvania who was not involved in the research, told Quanta Magazine that the finding could mean a single neuron may be able to compute truly complex functions. For example, it might, by itself, be able to recognize an object.
What does this mean for artificial intelligence research? At the very least, it means that we need to rethink our modeling of neurons. It might spur research in new artificial neuron structures and networks with different types of neurons. Maybe it might help free us from the trap of having to build extremely large neural networks and datasets to solve very simple problems.
The whole gameto come up with how you get smart cognition out of dumb neuronsmight be wrong, cognitive scientist Gary Marcus, who also spoke to Quanta, said in this regard.
More:
Neuroscience shows whats right and wrong with AI - TechTalks
- New neuroscience research sheds light on distinct patterns of learning and generalization in autistic adults - PsyPost - January 23rd, 2025 [January 23rd, 2025]
- Neuroscientists need to do better at explaining basic mental health research - The Transmitter: Neuroscience News and Perspectives - January 23rd, 2025 [January 23rd, 2025]
- How Severance shows the possibilities of cognitive neuroscience - Fast Company - January 23rd, 2025 [January 23rd, 2025]
- AdventHealth Welcomes New Leadership In Heart and Vascular Services, Neuroscience and Orthopedics - Northwest Georgia News - January 23rd, 2025 [January 23rd, 2025]
- School of Neuroscience and Language Sciences Program recognized with University Exemplary Department or Program Award - Virginia Tech - January 23rd, 2025 [January 23rd, 2025]
- Early Exposure to Violent Media Linked to Teen Antisocial Behavior - Neuroscience News - January 23rd, 2025 [January 23rd, 2025]
- The Real Cognitive Neuroscience Behind Severance - WIRED - January 23rd, 2025 [January 23rd, 2025]
- The 15 most popular psychology and neuroscience studies in 2024 - PsyPost - January 1st, 2025 [January 1st, 2025]
- The 'lizard brain' lie: How neuroscience demolished the greatest mind myth - BBC Science Focus - January 1st, 2025 [January 1st, 2025]
- Revolutionizing Brain Diagnostics with Light and AI - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- How Early Experiences Shape Genes, Brain Health, and Resilience - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- A nation exhausted: The neuroscience of why Americans are tuning out political news - Indiana Capital Chronicle - January 1st, 2025 [January 1st, 2025]
- Lithium Restores Brain Function and Behavior in Autism - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- Partners in Diversity presents the science of belonging: exploring the neuroscience of inclusion - Here is Oregon - January 1st, 2025 [January 1st, 2025]
- Classical vs. Operant Conditioning: The Brain's Memory Tug-of-War - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Personality Gap Between Singles and the Partnered - Neuroscience News - January 1st, 2025 [January 1st, 2025]
- The Neuroscience Behind Vermeers Girl and Its Hypnotic Power - ZME Science - January 1st, 2025 [January 1st, 2025]
- Serotonin, GABA, and Dopamine Drive Hunger and Feeding - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- A nation exhausted: The neuroscience of why Americans are tuning out politics - The Conversation - December 23rd, 2024 [December 23rd, 2024]
- UNO Goalie and Neuroscience Grad Shines in Her Athletic and Academic Aspirations - University of Nebraska Omaha - December 23rd, 2024 [December 23rd, 2024]
- Neuroscience Major Seeks to Bridge the Generation Gap, Help Alzheimers Patients - Pomona College - December 23rd, 2024 [December 23rd, 2024]
- Spectrum 2024: Year in review - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Say what? The Transmitters top quotes of 2024 - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Targeted or Broadcast? How the Brain Processes Visual Information - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- 70 Is the New 60: Age Related Declines Slowing in Older People - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- Breathing Rhythms During Sleep Strengthen Memory Consolidation - Neuroscience News - December 23rd, 2024 [December 23rd, 2024]
- How our brains think: Exploring the world of neuroscience at the Yale Peabody Museum - Connecticut Public - December 23rd, 2024 [December 23rd, 2024]
- Assembloids illuminate circuit-level changes linked to autism, neurodevelopment - The Transmitter: Neuroscience News and Perspectives - December 23rd, 2024 [December 23rd, 2024]
- Mapping the Brain's Response to Social Rejection - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- An eye for science: Q&A with Bryan W. Jones - The Transmitter: Neuroscience News and Perspectives - December 9th, 2024 [December 9th, 2024]
- Short Sleep and High Blood Pressure Linked to Brain Aging - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neighborhood Disadvantage Linked to Cognitive Health Risks - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Psychosis Risk Tied to Heavy Cannabis Use and Genetic Factors - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Most Teens Recover From Long Covid Within Two Years - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Opportunities and challenges of single-cell and spatially resolved genomics methods for neuroscience discovery - Nature.com - December 9th, 2024 [December 9th, 2024]
- How Evolution Shaped the Brains Understanding of Numbers - Neuroscience News - December 9th, 2024 [December 9th, 2024]
- Neuroscience Study Aboard Cunard's Queen Mary 2 Reveals Cognitive Benefits of Slow Travel at Sea - PR Newswire - November 28th, 2024 [November 28th, 2024]
- How Expectations Shape Our Gaze in a Changing World - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- To keep or not to keep: Neurophysiologys data dilemma - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Does Alcohol Consumption Contribute to Hair Loss? - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Brains Traffic Controllers Hold Key to Learning and Memory - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Despite Neuroscience Setback, AbbVie Has Strong Recovery Ahead (ABBV) - Seeking Alpha - November 28th, 2024 [November 28th, 2024]
- Neuroscientists reeling from past cuts advocate for more BRAIN Initiative funding - The Transmitter: Neuroscience News and Perspectives - November 28th, 2024 [November 28th, 2024]
- Want Better Habits? Neuroscience Says This Is How to Train Your Brain - Inc. - November 28th, 2024 [November 28th, 2024]
- Dopamine and Serotonin Work in Opposition for Effective Learning - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Cunard Proves the Healing Power of Ocean Travel with Breakthrough Neuroscience Research - Travel And Tour World - November 28th, 2024 [November 28th, 2024]
- Bridging the Gap between Meditation, Neuroscience, and the Soul - openPR - November 28th, 2024 [November 28th, 2024]
- Animal Characters in Childrens Books Boost Theory of Mind - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Emotional Struggles and Tantrums in Preschoolers Linked to ADHD - Neuroscience News - November 28th, 2024 [November 28th, 2024]
- Neuroscience Says This Simple Habit Improves Cognitive Health and Makes Your Brain Act Younger - Inc. - November 20th, 2024 [November 20th, 2024]
- Premature declarations on animal consciousness hinder progress - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Medtronic Q2 Earnings: Diabetes And Neuroscience Revenue Boost Growth, Raises Annual Outlook - Yahoo Finance - November 20th, 2024 [November 20th, 2024]
- Trace Neuroscience Nets $101M in Series A Funding for ALS, Dementia Therapy Development - Senior Housing News - November 20th, 2024 [November 20th, 2024]
- How to be a multidisciplinary neuroscientist - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Neuroscience Market Expected to Reach USD 71.0 Billion by - GlobeNewswire - November 20th, 2024 [November 20th, 2024]
- Finger-Prick Test Brings Alzheimers Detection Closer to Everyone - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- Dual-Gene Therapy Shows Promise for Hearing and Vision Loss - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- Robots Help Unlock the Mystery of Human Sense of Self - Neuroscience News - November 20th, 2024 [November 20th, 2024]
- The neuroscience of sleep - University of South Carolina - November 20th, 2024 [November 20th, 2024]
- Stress warps fear memories in multiple ways - The Transmitter: Neuroscience News and Perspectives - November 20th, 2024 [November 20th, 2024]
- Mental Exhaustion Drives Aggressive Behavior - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- NeuroAI: A field born from the symbiosis between neuroscience, AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- The neuroscience of deeper learning in math - SmartBrief - November 12th, 2024 [November 12th, 2024]
- What the brain can teach artificial neural networks - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- How Anthony Zador thinks neuroscience can help improve AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Discovering Cancer Therapies through Neuroscience - The New York Academy of Sciences - November 12th, 2024 [November 12th, 2024]
- Neuroscience Market Projected to Reach USD 50.2 Billion by 2032, Growing at a 4.0% CAGR S&S Insider - GlobeNewswire - November 12th, 2024 [November 12th, 2024]
- Insights on Brain Aging and Lifelong Cognitive Health - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- A neuroscience PhD student at the University of Oxford has died - The Tab - November 12th, 2024 [November 12th, 2024]
- Exploring the connection between autism and sleep - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Astrocytes star in memory storage, recall - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Modulate Stress Responses Over Time - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Could Hold the Key to Promoting Healthy Aging - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Microglias pruning function called into question - The Transmitter: Neuroscience News and Perspectives - October 26th, 2024 [October 26th, 2024]
- Depression Alters Brain Circuits, Heightening Negative Perception - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- UNE Researchers Showcase Groundbreaking Work at Global Neuroscience Conference - University of New England - October 26th, 2024 [October 26th, 2024]
- Scientists discover "glue" that holds memory together in fascinating neuroscience breakthrough - PsyPost - October 26th, 2024 [October 26th, 2024]
- Systems neuroscience: combining theory and neurotechnology for a multiscale account of the brain - Nature.com - October 26th, 2024 [October 26th, 2024]
- Seaport Therapeutics adds another $225 million to coffers to embrace the golden age of neuroscience - STAT - October 26th, 2024 [October 26th, 2024]
- ANRO Investors Have Opportunity to Join Alto Neuroscience, Inc. Fraud Investigation with the Schall Law Firm - Business Wire - October 26th, 2024 [October 26th, 2024]