Who are you and howdid you become interested in free will?
I am an Assistant Professor of Philosophy at Iona College where I also serve as a faculty member for the Iona Neuroscience program. I have previously worked in the Scientific and Philosophical Studies of Mind program at Franklin and Marshall College as well as previous appointments as a Lecturer at Kings College London and University of Alabama. My recent and forthcoming publications focus on issues of autonomy in terms of philosophical accounts of free will as well as how it intersects with neuroscience and psychiatry. One of the main questions I investigate is what neuroscience can tell us about meaningful agency (see here for my recent review of the topic as part of an extended review of research on agency, freedom, and responsibility for the John Templeton Foundation).
I became interested in free will via an interdisciplinary route. As an undergraduate at Grinnell College, I majored in psychology with a strong emphasis on experimental psychology and clinical psychology. During my senior year at Grinnell I realized that I was fascinated by the theoretical issues operating in the background of the psychological studies that we read and conducted, especially issues of how the mind is related to the brain, prospects for the scientific study of consciousness, and how humans as agents fit into a natural picture of the world. So I followed these interests to the study of philosophy of psychology and eventually found my way to the perfect fusion of these topics: the neuroscience of free will.
What is free will?
Free will seems to be a familiar feature of our everyday lives most of us believe that (at least at times) what we do is up to usto some extent. For instance, that I freely decided to take my job or that I am acting freely when I decide to go for a run this afternoon. Free will is not just that I move about in the world to achieve a goal, but that I exercise meaningful control over what I decide to do. My decisions and actions are up to mein the sense that they are mine a product of my values, desires, beliefs, and intentions. I decided to take this job because I valued the institutions mission or I believed that this job would be enriching or a good fit for me.
Correspondingly, it seems to me that at least at times I could have decided to and done something else than what I did. I decided to go for a run this afternoon, but no one made meand I wasnt subject to any compulsion; I could have gone for a coffee instead, at least it seems to me.
Philosophers take these starting points and work to construct plausible accounts of free will. Broadly speaking, there is a lot of disagreement as to the right view of free will, but most philosophers believe that a person has free will if they have the ability to act freely, and that this kind of control is linked to whether it would be appropriate to hold that person responsible (e.g., blame or praise them) for what they do. For instance, we dont typically hold people responsible for what they do if they were acting under severe threat or inner compulsion.
How do neuroscientists study free will?
There are plenty of sensational claims about the brain science of free will out there and lots of back and forth about whether or not science disproves free will (e.g., My brain made me do it). Given the strong link between free will and systems of moral and legal responsibility, like punishment, the stakes are high not just for our conception of human nature, but also for our everyday practices that matter.
The current neuroscience of free will traces its lineage back to an influential experiment by Benjamin Libet and his colleagues. The majority of our actions begin with bodily movements, and most of us think that when we decide to move (e.g., decide to pick up my cup of tea), first I, the agent or person, decides and then I hand off control, so to speak, to the brain circuits for motor control to execute the action.
It was known since the 1960s from work by Kornhuber and Deecke that there is slow buildup of negative brain activity in the supplementary motor area (SMA) and pre-SMA measurable by electoencephalography (EEG) just prior to voluntary (i.e., movement initiated by the participant) bodily movement. This brain activity, called the readiness potential (RP), was taken to be neural preparation to move for spontaneous movements and starts about a half second before time of the movement (here).
So Libet and his fellow researchers ask when does the agent appear in relation to the RP? The agents decision has to be something measurable in the lab, so Libet asked participants to make movements (of the finger or wrist) at a time of their choosing and then report after the fact when they were first aware of their decision or urge to move using a modified clock (termed W time).
Libet found, contra the commonsense expectation, that the average reported time of first awareness of decision to move, W-time, occurred almost a third of a second after the start of the RP. So Libet (and select others since) concluded that the RP is the brains unconscious decision to move with the agents decision occurring later (here).
Libet took this as evidence that the conscious agent or self doesnt initiate, or kick off, preparation to act, the unconscious brain does. He argued that this result is representative of how all of our voluntary movements are produced, and, if so, then the agents conscious decision to act doesnt initiate the process leading to movement. But if the agent doesnt play this initiating role in acting, how can it be up to mehow I act?
These results have worried a lot of folks and inspired a booming research enterprise in cognitive neuroscience and philosophy. One shouldnt jump to the depressing conclusion, though, that we dont act freely or dont really deserve any of the moral reactions others have to our actions; there is a healthy discussion on how the original Libet results can be interpreted as consistent with that picture of us humans as self-governing and free and moral persons.
W-time is taken to indicate moment of awareness of a decision. Can we capture "moments of conscious awareness"scientifically?
Since the initial publication of Libet and colleagues study, worries about whether we could measure time of conscious awareness have been voiced. After all, we are talking here about the timeframe of milliseconds. In these studies all of the events measured prior to movement in the lab are happening within one second before the participant wiggles a finger or hand (now button presses are the preferred movement). Libet argued that W-time within a reasonable range was reliable since we can see how accurately participants in the lab estimate the time of other events, such as skin shocks. The reliability of W-time has recently been challenged yet again with a new study that concludes that depending on the order in which participants complete certain tasks in the experiment, W-time can be strikingly different (i.e., there is an order effect; seehere).
Other researchers are currently exploring alternative ways to measure a decision to move in the lab, including work by Pars-Pujolrs and co-authors, who have been using an online(i.e., pre-movement) measure of the agents awareness of a decision to move (here).
In these studies participants watch a continuous stream of letters on a computer while spontaneously pressing a button. Every now and then, though, the letters change color. When this happens participants are told to press the button just then if they were already aware of their preparing to press the button soon. These kinds of onlinemeasures of awareness may yet prove to be more reliable ways of getting at whether people have conscious intentions to act in the lab.
Whats the latest work on neuroscience of free will?
Two of the hottest topics seem to be, first, what exactly the RP, that negative build-up of brain activity pre-movement, really signifies and, second, how we can make our voluntary actions in the lab more ecologically valid.As to the first, the past decade has seen researchers investigating if we have evidence that the RP really does stand for a decision to move or, alternatively, if the RP just is the brains being biased to move in some way (say, left, instead of right) without the commitment to do so.
Others test the possibility that the RP isnt really movement specific activity at all (e.g., general cognitive preparation to perform a task voluntarily). Others, such as Schurger and colleagues, have argued via empirical studies that the RP is the neural signature that we pick up when are actions are generated by neural noise crossing some threshold (here). That possibility would be alarming as then our actions, which we take to be undertaken by me for reasons, may really just be the passive result of fluctuating brain activity.
As to the second hot issue, researchers are now attempting to design tasks in the lab that are closer to the kind of decisions and action that we engage in daily. Libet argued that a simple movement like a wrist flex or button press could stand in for the more complex actions, as the RP has been shown to occur prior to more complex movements in the lab. Hence we could give a unified explanation of the timing of events involving practical decisions and bodily movements.
But many, myself included, have voiced concern that when to press a button or whether to press a left or right button, just isnt the right kind of action to stake a claim that we as agents dont initiate our actions via our conscious intentions to act. Hence, some of the ongoing work involves making the choice of which button to press or when to press it meaningful via rewards or penalties for skipping ahead or value-laden options, such as charity donations.*
And, of course, there are plenty of neuroimaging tools at the disposal of cognitive neuroscientists. Some of the most interesting replications and extensions of the Libet findings have been done using singe-cell recording and fMRI among other technologies (see here and here, respectively). In fact, the neuroscience of free will has been and currently isthe focus of some major research grants, such as the Big Questions in Free Will project (2010-2014, Principal Investigator Dr. Alfred Mele) and the Consciousness and Free Will project (2019-, a collaboration across 17 PIs), each of which involves philosophers and numerous neuroscientific labs worldwide. From these grants I think we should expect further clarity on whats going on under the hood, so to speak, when we decide what to do and act voluntarily.
Are there any other results in neuroscience that tell us something intriguing about our agential control?
Yes, one of the aspects of our lives that seems the most undeniable is that we really do experience ourselves as in control of our movements and their effects in the world. There is a large body of work in cognitive neuroscience which focuses on this sense of agency via research on whats been termed intentional binding (for a recent academic review see here).
Basically, if you ask participants in clever experimental set-ups to judge whether some event (e.g., icon moving on a computer screen) was the outcome of their agency or someone elses (i.e., I did that judgments), participants tend to misjudge an outcome to be a result of their own agency if it is a positive one and misjudge an outcome to be the result of anothers agency if it is a negative one. That is, there is a self-serving biasto explicit sense of agency judgments (For interesting results in this regard see Wegner and Wheatleys 1999 paper here and other earlier work in psychology on attribution theory).
Cognitive neuroscientists have found a methodology to study our sense that we are in control of our actions and actional outcomes without surveying participants explicit I did that judgments. Instead, experimenters ask participants to judge the time of various events, including their movements (e.g., a button press) and the sensory outcomes of those movements (e.g., a beep following the button press). What researchers have found is that if you voluntarily press a button and hear a tone as a consequence, you are going to judge that the time of the movement and the time of the tone are much closer together in perceived space than if you are caused to move (via neural stimulation) and hear a tone as a consequence.
In other words, the perceived time of the action and the tone bind together in perceptual space when you act voluntarily as opposed to when you are caused to move or simply judge the time of events without acting (here). Whats intriguing about this research on agency, then, is that our perceptual judgments about the world seem to distinguish when we act from when something is done to us. Research work on intentional binding has tackled more ecologically valid issues of sense of agency when acting under emotional distress, due to coercion, and in the face of options.*
* Neuroscientists working on more representative kinds of decisions and/or sense of agency in more ecologically valid contexts include researchers in the UCL Action and Body Lab at University College London and The Brain Institute at Chapman University, among others.
Read the original here:
The Neuroscience of Free Will: A Q & A with Robyn Repko Waller - Scientific American
- Mental Exhaustion Drives Aggressive Behavior - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- NeuroAI: A field born from the symbiosis between neuroscience, AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- The neuroscience of deeper learning in math - SmartBrief - November 12th, 2024 [November 12th, 2024]
- What the brain can teach artificial neural networks - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- How Anthony Zador thinks neuroscience can help improve AI - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Discovering Cancer Therapies through Neuroscience - The New York Academy of Sciences - November 12th, 2024 [November 12th, 2024]
- Neuroscience Market Projected to Reach USD 50.2 Billion by 2032, Growing at a 4.0% CAGR S&S Insider - GlobeNewswire - November 12th, 2024 [November 12th, 2024]
- Insights on Brain Aging and Lifelong Cognitive Health - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- A neuroscience PhD student at the University of Oxford has died - The Tab - November 12th, 2024 [November 12th, 2024]
- Exploring the connection between autism and sleep - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Astrocytes star in memory storage, recall - The Transmitter: Neuroscience News and Perspectives - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Modulate Stress Responses Over Time - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Gut Bacteria Could Hold the Key to Promoting Healthy Aging - Neuroscience News - November 12th, 2024 [November 12th, 2024]
- Microglias pruning function called into question - The Transmitter: Neuroscience News and Perspectives - October 26th, 2024 [October 26th, 2024]
- Depression Alters Brain Circuits, Heightening Negative Perception - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- UNE Researchers Showcase Groundbreaking Work at Global Neuroscience Conference - University of New England - October 26th, 2024 [October 26th, 2024]
- Scientists discover "glue" that holds memory together in fascinating neuroscience breakthrough - PsyPost - October 26th, 2024 [October 26th, 2024]
- Systems neuroscience: combining theory and neurotechnology for a multiscale account of the brain - Nature.com - October 26th, 2024 [October 26th, 2024]
- Seaport Therapeutics adds another $225 million to coffers to embrace the golden age of neuroscience - STAT - October 26th, 2024 [October 26th, 2024]
- ANRO Investors Have Opportunity to Join Alto Neuroscience, Inc. Fraud Investigation with the Schall Law Firm - Business Wire - October 26th, 2024 [October 26th, 2024]
- Youth Face Rising Risks of Harassment and Exploitation in the Metaverse - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Exercise During Chemotherapy Boosts Cognitive Function - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Removing Pre-Bed Screen Time Improves Toddler Sleep - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Bright Minds Biosciences and Firefly Neuroscience to Collaborate After the BREAKTHROUGH Study: A Phase 2 Trial of BMB-101 in Absence Epilepsy and... - October 26th, 2024 [October 26th, 2024]
- How Visual Clutter Disrupts Information Flow in the Brain - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- Menopausal Hormone Therapys Effects on Brain Health - Neuroscience News - October 26th, 2024 [October 26th, 2024]
- After-hours movers: McDonald's, Starbucks, Seagate, Alto Neuroscience and more - StreetInsider.com - October 26th, 2024 [October 26th, 2024]
- Alto Neuroscience Reports Topline Results from a Phase 2b Trial Evaluating ALTO-100 as a Treatment for Major Depressive Disorder - StockTitan - October 26th, 2024 [October 26th, 2024]
- Cristina Savin and Tim Vogels discuss how AI has shaped their neuroscience research - The Transmitter: Neuroscience News and Perspectives - October 13th, 2024 [October 13th, 2024]
- Should I stay (and eat) or should I go? How the brain balances hunger with competing drives - The Transmitter: Neuroscience News and Perspectives - October 13th, 2024 [October 13th, 2024]
- How neuroscience comics add KA-POW! to the field: Q&A with Kanaka Rajan - The Transmitter: Neuroscience News and Perspectives - October 13th, 2024 [October 13th, 2024]
- Neuroscience research sheds light on how psilocybin alters spatial awareness - PsyPost - October 13th, 2024 [October 13th, 2024]
- Newly Discovered Protein Complex Shapes Synapses and Mental Health - Neuroscience News - October 13th, 2024 [October 13th, 2024]
- The Neuroscience Behind Immersive Filmmaking - Raindance - October 13th, 2024 [October 13th, 2024]
- What are mechanisms? Unpacking the term is key to progress in neuroscience - The Transmitter: Neuroscience News and Perspectives - October 13th, 2024 [October 13th, 2024]
- Kentucky neuroscience doctor honored with national distinction - wnky.com - October 13th, 2024 [October 13th, 2024]
- Cell X Technologies and Aspen Neuroscience collaborate to address throughput and scalability in manufacturing automation to facilitate iPSC cell... - October 13th, 2024 [October 13th, 2024]
- Tracking Daily Habits Lasting Effects on the Brain - Neuroscience News - October 13th, 2024 [October 13th, 2024]
- Dak Prescott Was Silent After Hearing It From a Teammate. Its a Lesson in Emotional Intelligence (Backed By Neuroscience) - Inc. - October 13th, 2024 [October 13th, 2024]
- Helping Kids Fact-Check in the Age of Misinformation - Neuroscience News - October 13th, 2024 [October 13th, 2024]
- Study Links Calorie Restriction to Longevity - Neuroscience News - October 13th, 2024 [October 13th, 2024]
- A Princeton Professor Walks into a Neuroscience Meeting -- Many Years Later It Leads to a Nobel Prize in Physics - TAPinto.net - October 13th, 2024 [October 13th, 2024]
- Try these neuroscience-backed tactics to train your brain to make better decisions - Fast Company - October 2nd, 2024 [October 2nd, 2024]
- Tips to navigate SfN as a trainee - The Transmitter: Neuroscience News and Perspectives - October 2nd, 2024 [October 2nd, 2024]
- Neuroscience Says This 10-Minute Brain Exercise Will Make You Mentally Sharper and Keep You Focused All Day - Inc. - October 2nd, 2024 [October 2nd, 2024]
- Successful people do this 1 thing to be 'happier, more productive, less stressed' at work, says CEO and neuroscience researcher - CNBC - October 2nd, 2024 [October 2nd, 2024]
- Utilizing the Power of Neuroscience, Isabella Kensington May Have Cracked the Code Between Music and Healing - AOL - October 2nd, 2024 [October 2nd, 2024]
- Steve Jobs swore the 10-minute rule made him smarter. Modern neuroscience is discovering he was right - The Star Online - October 2nd, 2024 [October 2nd, 2024]
- Steve Jobs Swore the 10-Minute Rule Made Him Smarter. Modern Neuroscience Is Discovering He Was Right - Inc. - October 2nd, 2024 [October 2nd, 2024]
- Neural manifolds: Latest buzzword or pathway to understand the brain? - The Transmitter: Neuroscience News and Perspectives - October 2nd, 2024 [October 2nd, 2024]
- Neuroscience Says 3 Brainy Habits Will Make You More Efficient, Productive, and Focused - Inc. - October 2nd, 2024 [October 2nd, 2024]
- Ethics, AI, and Neuroscience Converge at Mental Health, Brain, and Behavioral Science Research Day - The University of Utah - October 2nd, 2024 [October 2nd, 2024]
- The neuroscience of campus memories - The Stanford Daily - October 2nd, 2024 [October 2nd, 2024]
- How the Brain Enhances Sleep Through Synaptic Strength - Neuroscience News - October 2nd, 2024 [October 2nd, 2024]
- Neanderthoids and space brains: Stem cell researcher pushes the boundaries of neuroscience - Medical Xpress - October 2nd, 2024 [October 2nd, 2024]
- Nancy Padilla-Coreano - The Transmitter: Neuroscience News and Perspectives - October 2nd, 2024 [October 2nd, 2024]
- Utilizing the Power of Neuroscience, Isabella Kensington May Have Cracked the Code Between Music and Healing - Spin - October 2nd, 2024 [October 2nd, 2024]
- Genetic Variants Linked to Alzheimers Trigger Inflammation in Females - Neuroscience News - October 2nd, 2024 [October 2nd, 2024]
- New Astrocyte Target for Alzheimers Therapy - Neuroscience News - October 2nd, 2024 [October 2nd, 2024]
- Is an ankle sprain also a brain injury? How neuroscience is helping athletes, astronauts and average Joes - The Conversation Indonesia - October 2nd, 2024 [October 2nd, 2024]
- 5 Brain Strategies to Dramatically Reduce Conflict and Boost Your Leadership, Backed by Neuroscience - Inc. - September 23rd, 2024 [September 23rd, 2024]
- Fascinating neuroscience research reveals a key mechanism underlying human cognition - PsyPost - September 23rd, 2024 [September 23rd, 2024]
- Averaging is a convenient fiction of neuroscience - The Transmitter: Neuroscience News and Perspectives - September 23rd, 2024 [September 23rd, 2024]
- Repeat scans reveal brain changes that precede childbirth - The Transmitter: Neuroscience News and Perspectives - September 23rd, 2024 [September 23rd, 2024]
- Neuroscience helps explain the teenage brain and mental health - ABC News - September 15th, 2024 [September 15th, 2024]
- XX Marks the Spot: Addressing Sex Bias in Neuroscience - The Scientist - September 15th, 2024 [September 15th, 2024]
- Neuroscience-based tools for transformative leadership - Fast Company - September 15th, 2024 [September 15th, 2024]
- How 100 Years of EEG Have Transformed Neuroscience - Being Patient - September 15th, 2024 [September 15th, 2024]
- Reconstructing dopamines link to reward - The Transmitter: Neuroscience News and Perspectives - September 15th, 2024 [September 15th, 2024]
- The neuroscience of itch in relation to transdiagnostic psychological approaches - Nature.com - September 15th, 2024 [September 15th, 2024]
- A README for open neuroscience - The Transmitter: Neuroscience News and Perspectives - September 15th, 2024 [September 15th, 2024]
- Dopamine and the need for alternative theories - The Transmitter: Neuroscience News and Perspectives - September 15th, 2024 [September 15th, 2024]
- Kim Stachenfeld on the dance between neuroscience and artificial intelligence - The Transmitter: Neuroscience News and Perspectives - September 15th, 2024 [September 15th, 2024]
- Vijay Mohan K. Namboodiri - The Transmitter: Neuroscience News and Perspectives - September 15th, 2024 [September 15th, 2024]
- Varied Cognitive Training Boosts Learning and Memory - Neuroscience News - September 15th, 2024 [September 15th, 2024]
- Issue | September 2024 | XX Marks the Spot: Addressing Sex Bias in Neuroscience - The Scientist - September 15th, 2024 [September 15th, 2024]
- The Transmitter Partners With World Wide Neuro and Brain Inspired, Building on Mission to Inform, Connect Neuroscience Community - StreetInsider.com - September 15th, 2024 [September 15th, 2024]
- Gene Therapy Offers Hope for Glaucoma and AMD - Neuroscience News - September 15th, 2024 [September 15th, 2024]
- The Neuroscience of Phantom Sensations: Can We Feel Whats Not Really There? - SciTechDaily - September 2nd, 2024 [September 2nd, 2024]
- Tau May Protect Brain Cells from Oxidative Damage - Neuroscience News - September 2nd, 2024 [September 2nd, 2024]