An unprecedented amount of research has been focused solely on understanding the novel coronavirus that has taken nearly 150,000 lives across the globe. And while scientists have gotten to know some of the most intimate details of the virus called SARS-CoV-2, one question has evaded any definitive answers Where did the virus come from?
Live Science contacted several experts, and the reality, they said, is that we may never know where this deadly coronavirus originated. Among the theories circulating: That SARS-CoV-2 arose naturally, after passing from bats to a secondary animal and then to humans; that it was deliberately engineered and then accidentally released by humans; or that researchers were studying a naturally-occurring virus that subsequently escaped from a high-security biolab, the Wuhan Institute of Virology (WIV) in China. The head of the lab at WIV, for her part, has emphatically denied any link to the institute.
Just today (April 18), the vice director of WIV Zhiming Yuan CGTN, the Chinese state broadcaster, said "there is no way this virus came from us," NBC News reported. "We have a strict regulatory regime and code of conduct of research, so we are confident."
Furthermore, the notion that SARS-CoV-2 was genetically engineered is pure conspiracy, experts told Live Science, but it's still impossible to rule out the notion that Chinese scientists were studying a naturally-occurring coronavirus that subsequently "escaped" from the lab. To prove any of these theories takes transparent data and information, which is reportedly not happening in China, scientists say. Several experts have said to Live Science and other media outlets have reported that the likeliest scenario is that SARS-CoV-2 is naturally occurring.
Related: 13 coronavirus myths busted by science
"Based on no data, but simply [a] likely scenario is that the virus went from bats to some mammalian species, currently unknown despite speculation, [and] spilled over to humans," said Gerald Keusch, associate director of the Boston University National Emerging Infectious Diseases Laboratories. This spillover event may have happened before the virus found its way into a live animal market, "which then acted as an amplifying setting with many more infections that subsequently spread and the rest is history," Keusch said. "The timeline is fuzzy and I don't think we have real data to say when these things began, in large part because the data are being held back from inspection," Keusch told Live Science.
The SARS-CoV-2 virus is most closely related to coronaviruses found in certain populations of horseshoe bats that live about 1,000 miles (1,600 kilometers) away in Yunnan province, China. The first known outbreak of SARS-CoV-2 in humans occurred in Wuhan and initially was traced to a wet seafood market (which sold live fish and other animals), though some of the earliest cases have no link to that market, according to research published Feb. 15 in the journal The Lancet.
Related: 11 (sometimes) deadly diseases that hopped across species
What's more, despite several proposed candidates, from snakes to pangolins to dogs, researchers have failed to find a clear "intermediate host" an animal that would have served as a springboard for SARS-CoV-2 to jump from bats to humans. And if horseshoe bats were the primary host, how did the bat virus hop from its natural reservoir in a subtropical region to the bustling city of Wuhan hundreds of miles away?
These questions have led some people to look elsewhere in the hunt for the virus's origin, and some have focused on the Wuhan Institute of Virology (WIV).
In 2015, WIV became China's first lab to reach the highest level of bioresearch safety, or BSL-4, meaning the lab could host research on the world's most dangerous pathogens, such as Ebola and Marburg viruses. (SARS-CoV-2 would require a BSL-3 or higher, according to the Centers for Disease Control and Prevention.) Labs like these must follow strict safety guidelines that include filtering air, treating water and waste before they exit, and requiring lab personnel to shower and change their clothes before and after entering the facility, Nature News reported in 2017.
These types of labs do spur concerns among some scientists who worry about the risks involved and the potential impact on public health if anything were to go wrong, Nature News reported.
Related: The 12 deadliest viruses on Earth
WIV was not immune to those concerns. In 2018, after scientist diplomats from the U.S. embassy in Beijing visited the WIV, they were so concerned by the lack of safety and management at the lab that the diplomats sent two official warnings back to the U.S. One of the official cables, obtained by The Washington Post, suggested that the lab's work on bat coronaviruses with the potential for human transmission could risk causing a new SARS-like pandemic, Post columnist Josh Rogin wrote.
"During interactions with scientists at the WIV laboratory, they noted the new lab has a serious shortage of appropriately trained technicians and investigators needed to safely operate this high-containment laboratory," the officials said in their cable dated to Jan. 19, 2018.
When reports of the coronavirus first popped up in China, the U.S. Deputy National Security Advisor Matthew Pottinger reportedly suspected a potential link to China labs. In mid-January, according to a New York Times report, Pottinger asked intelligence agencies like the C.I.A., particularly individuals with expertise on Asia and weapons of mass destruction, to investigate this idea. They came up empty-handed, the Times reported.
Meanwhile, the lab at the center of these speculations had long been sounding the alarm about the risk of the SARS-like coronaviruses they studied to spawn a pandemic.
The head of the lab's bat-coronavirus research, Shi Zhengli, published research on Nov. 30, 2017 in the journal PLOS Pathogens that traced the SARS coronavirus pandemic in 2003 to a single population of horseshoe bats in a remote cave in Yunnan province. The researchers also noted that other SARS-like coronaviruses discovered in that cave used the ACE2 receptor to infect cells and could "replicate efficiently in primary human airway cells," they wrote. (Both SARS and SARS-CoV-2 use the ACE2 receptor as the entry point into cells.)
Zhengli and her colleagues stressed the importance of monitoring and studying the SARS coronaviruses to help prevent another pandemic.
"Thus, we propose that monitoring of SARS-CoV evolution at this and other sites should continue, as well as examination of human behavioral risk for infection and serological surveys of people, to determine if spillover is already occurring at these sites and to design intervention strategies to avoid future disease emergence," they wrote.
Related: 20 of the worst epidemics and pandemics in history
The WIV lab, along with researchers in the U.S. and Switzerland, showed in 2015 the scary-good capability of bat coronaviruses to thrive in human cells. In that paper, which was published in 2015 in the journal Nature Medicine, they described how they had created a chimeric SARS-like virus out of the surface spike protein of a coronavirus found in horseshoe bats, called SHC014, and the backbone of a SARS virus that could be grown in mice. The idea was to look at the potential of coronaviruses circulating in bat populations to infect humans. In a lab dish, the chimeric coronavirus could infect and replicate in primary human airway cells; the virus also was able to infect lung cells in mice.
That study was met with some pushback from researchers who considered the risk of that kind of research to outweigh the benefits. Simon Wain-Hobson, a virologist at the Pasteur Institute in Paris, was one of those scientists. Wain-Hobson emphasized the fact that this chimeric virus "grows remarkably well" in human cells, adding that "If the virus escaped, nobody could predict the trajectory," Nature News reported.
None of this can show the provenance of SARS-CoV-2.
But scientists can start to rule out an idea that the pandemic-causing coronavirus was engineered in that lab or further created as a bioweapon. Researchers say the overwhelming evidence indicates this is a natural-borne virus that emerged from an animal host, likely a bat, and was not engineered by humans.
Related: 28 devastating infectious diseases
"This origin story is not currently supported at all by the available data," said Adam Lauring, an associate professor of microbiology, immunology and infectious diseases at the University of Michigan Medical School. Lauring pointed to a study published March 17 in the journal Nature Medicine, which provided evidence against the idea that the virus was engineered in a lab.
In that Nature medicine study one of the strongest rebukes of this idea Kristian Andersen, an associate professor of immunology and microbiology at Scripps Research, and his colleagues analyzed the genome sequences of SARS-CoV-2 and coronaviruses in animals. They found that a key part of SARS-CoV-2, the spike protein that the virus uses to attach to ACE2 receptors on the outsides of human cells, would almost certainly have emerged in nature and not as a lab creation.
"This analysis of coronavirus genome sequences from patients and from various animals suggests that the virus likely arose in an animal host and then may have undergone further changes once it transmitted and circulated in people," Lauring told Live Science.
That may rule out deliberate genetic engineering, but what about other scenarios that point to bats as the natural hosts, but WIV as the source of the outbreak?
Although researchers will likely continue to sample and sequence coronaviruses in bats to determine the origin of SARS-CoV-2, "you can't answer this question through genomics alone," said Dr. Alex Greninger, an assistant professor in the Department of Laboratory Medicine and an assistant director of the Clinical Virology Laboratory at the University of Washington Medical Center. That's because it's impossible to definitively tell whether SARS-CoV-2 emerged from a lab or from nature based on genetics alone. For this reason, it's really important to know which coronaviruses were being studied at WIV. "It really comes down to what was in the lab," Greninger told Live Science.
However, Lauring said that based on the Nature Medicine paper, "the SARS-CoV-2 virus has some key differences in specific genes relative to previously identified coronaviruses the ones a laboratory would be working with. This constellation of changes makes it unlikely that it is the result of a laboratory 'escape,'" he said.
As for what viruses were being studied at WIV, Zhengli says she did a thorough investigation. When she first was alerted to the viral outbreak in Wuhan on the night of Dec. 30, 2019, Zhengli immediately put her lab to work sequencing the genomes of SARS-CoV-2 from infected patients and comparing the results with records of coronavirus experiments in her lab. She also looked for any mishandling of viral material used in any experiments, Scientific American reported. She didn't find any match between the viruses her team was working with from bat caves and those found in infected patients. "That really took a load off my mind," she told Scientific American. "I had not slept a wink for days."
At the beginning of February, Zhengli sent a note over WeChat to reassure her friends that there was no link, saying "I swear with my life, [the virus] has nothing to do with the lab," the South China Morning Post reported Feb. 6. Zhengli and another colleague, Peng Zhou, did not reply to a Live Science email requesting comment.
The Wuhan lab does work with the closest known relative of SARS-CoV-2, which is a bat coronavirus called RaTG13, evolutionary virologist Edward Holmes, of the Charles Perkins Center and the Marie Bashir Institute for Infectious Diseases and Biosecurity at the University of Sydney, said in a statement from the Australian Media Center. But, he added, "the level of genome sequence divergence between SARS-CoV-2 and RaTG13 is equivalent to an average of 50 years (and at least 20 years) of evolutionary change." (That means that in the wild, it would take about 50 years for these viruses to evolve to be as different as they are.)
Though no scientists have come forth with even a speck of evidence that humans knowingly manipulated a virus using some sort of genetic engineering, a researcher at Flinders University in South Australia lays out another scenario that involves human intervention. Bat coronaviruses can be cultured in lab dishes with cells that have the human ACE2 receptor; over time, the virus will gain adaptations that let it efficiently bind to those receptors. Along the way, that virus would pick up random genetic mutations that pop up but don't do anything noticeable, said Nikolai Petrovsky, in the College of Medicine and Public Health at Flinders.
"The result of these experiments is a virus that is highly virulent in humans but is sufficiently different that it no longer resembles the original bat virus," Petrovsky said in a statement from the Australian Media Center. "Because the mutations are acquired randomly by selection, there is no signature of a human gene jockey, but this is clearly a virus still created by human intervention."
If that virus infected a staff member and that person then traveled to the nearby seafood market, the virus could have spread from there, he said. Or, he added, an "inappropriate disposal of waste from the facility" could have infected humans directly or from a susceptible intermediary, such as a stray cat.
Though we may never get a definitive answer, at least in the near-term, some say it doesn't matter.
"No matter the origin, evolution in nature and spillover to humans, accidental release from a lab, or deliberate release or genetic manipulation of a pathogen in the lab the way you develop countermeasures is the same," Keusch told Live Science. "Since one can never say 100% for anything, I think we always need to be aware of all possibilities in order to contravene. But the response to develop what is needed to respond, control and eliminate the outbreak remains the same."
Live Science senior writer Rachael Rettner contributed to this report.
Originally published on Live Science.
View original post here:
Wuhan lab says there's no way coronavirus originated there. Here's the science. - Livescience.com
- Cross-priming in cancer immunology and immunotherapy - Nature.com - February 3rd, 2025 [February 3rd, 2025]
- Sanofi Happy To Spend To Hit Immunology Top Spot - News & Insights - February 3rd, 2025 [February 3rd, 2025]
- The Converging Therapeutic Landscape of Oncology and Immunology: Accelerating Innovation in Biotech - MedCity News - January 23rd, 2025 [January 23rd, 2025]
- VC Firm Foresite Capital Dishes on Biotech Innovation in China, Opportunities in Immunology - MedCity News - January 23rd, 2025 [January 23rd, 2025]
- Immunology - The Scientist - January 23rd, 2025 [January 23rd, 2025]
- Immunology Startup Ouro Sets Out With $120M for Drugs That Reset the Immune System - MedCity News - January 15th, 2025 [January 15th, 2025]
- Scipher Medicine and Atropos Health Partner to Accelerate Precision Medicine and Expand the Immunology Multimodal Network - Business Wire - December 23rd, 2024 [December 23rd, 2024]
- AbbVie to expand immunology pipeline with $200m Nimble Therapeutics acquisition - PMLiVE - December 23rd, 2024 [December 23rd, 2024]
- Sir Gustav Nossal Professor of Immunology to honour giant of Australian science - Walter and Eliza Hall Institute of Medical Research - December 9th, 2024 [December 9th, 2024]
- Research Assistant in Immunology - Surrey, United Kingdom job with UNIVERSITY OF SURREY | 384335 - Times Higher Education - November 28th, 2024 [November 28th, 2024]
- Reflecting on Pioneering organoids and 3D cell cultures for animal and human health - British Society for Immunology | - November 28th, 2024 [November 28th, 2024]
- Innate Pharma Announces Publication in Science Immunology Highlighting Innovative Next-generation ANKET - Business Wire - November 20th, 2024 [November 20th, 2024]
- TRexBio Announces $84 Million Series B Financing to Advance Pipeline of First-in-Class Immunology Programs into Clinical Development - Business Wire - November 20th, 2024 [November 20th, 2024]
- Discovering Solutions for Long COVID: A T-Cell Immunology Breakthrough - Infection Control Today - November 20th, 2024 [November 20th, 2024]
- Innate Pharma Announces Publication in Science Immunology Highlighting Innovative Next-generation ANKET IPH6501 - The Bakersfield Californian - November 20th, 2024 [November 20th, 2024]
- Immunology Data Shows INOVIO's INO-3107 Induced Expansion of New Clonal T Cells That Infiltrate Airway Tissue and Correspond With Reduction of... - November 20th, 2024 [November 20th, 2024]
- What it's like in allergy and immunology: Shadowing Dr. Fraser - American Medical Association - November 12th, 2024 [November 12th, 2024]
- Dr. Naba Sharif Elected President of the New Jersey Allergy Asthma and Immunology Society - Newswire - November 12th, 2024 [November 12th, 2024]
- Department of Microbiology and Immunology Named a National Milestones Program - Stony Brook News - October 26th, 2024 [October 26th, 2024]
- Astria Therapeutics to Present at Upcoming American College of Allergy, Asthma, and Immunology Annual Scientific Meeting - businesswire.com - October 26th, 2024 [October 26th, 2024]
- Remembering immunology educator, researcher Tom McDonald, PhD - University of Nebraska Medical Center - October 13th, 2024 [October 13th, 2024]
- Systems immunology approaches to study T cells in health and disease - Nature.com - October 13th, 2024 [October 13th, 2024]
- Leading the charge to discover answers in immunology - The University of Arizona - October 2nd, 2024 [October 2nd, 2024]
- New mouse models offer valuable window into COVID-19 infection - La Jolla Institute for Immunology - October 2nd, 2024 [October 2nd, 2024]
- Wide-Moat AbbVie Poised for Growth, Driven by Innovation in Immunology Beyond Humira - Morningstar - October 2nd, 2024 [October 2nd, 2024]
- Lilly's immunology unit scores another FDA nod with eczema treatment Ebglyss - FiercePharma - September 23rd, 2024 [September 23rd, 2024]
- Huang Named Head Of Pathology And Immunology - Mirage News - September 15th, 2024 [September 15th, 2024]
- Huang named head of pathology & immunology - Washington University School of Medicine in St. Louis - September 15th, 2024 [September 15th, 2024]
- Apogee Therapeutics to Participate at the Stifel 2024 Immunology and Inflammation Summit - Yahoo Finance - September 15th, 2024 [September 15th, 2024]
- Eliem Therapeutics to Participate at the Stifel 2024 Virtual Immunology and Inflammation Summit - StockTitan - September 15th, 2024 [September 15th, 2024]
- UCLA receives $120 million from Alya and Gary Michelson for new California Institute for Immunology and Immunotherapy - UCLA Newsroom - September 2nd, 2024 [September 2nd, 2024]
- Boosting vaccines for the elderly with 'hyperactivators' - Boston Children's Answers - Boston Children's Discoveries - June 27th, 2024 [June 27th, 2024]
- Immunologists Want You to Know These Dust Mite Allergy Facts - Yahoo Lifestyle UK - June 27th, 2024 [June 27th, 2024]
- How Ragon Institute's new building aids its mission Harvard Gazette - Harvard Gazette - June 27th, 2024 [June 27th, 2024]
- Insights into CRS and NPs: Visual and Bibliometric Analysis - Physician's Weekly - June 27th, 2024 [June 27th, 2024]
- Biogen joins immunology wave with $1.15 billion acquisition of HI-Bio - STAT - May 24th, 2024 [May 24th, 2024]
- Biogen Buys Desired Growth In Immunology With $1.15bn Hi-Bio Deal - Scrip - May 24th, 2024 [May 24th, 2024]
- Biogen Boosts Immunology Portfolio with $1.8 Billion Acquisition of HI-Bio - BioPharm International - May 24th, 2024 [May 24th, 2024]
- Owkin Unveils AI-Driven Oncology and Immunology Pipeline, In-Licenses Best-in-Class Asset OKN4395 - Yahoo Finance - May 24th, 2024 [May 24th, 2024]
- Biogen to expand immunology and rare disease portfolio with $1.8bn HI-Bio acquisition - PMLiVE - May 24th, 2024 [May 24th, 2024]
- Astria Therapeutics to Present at Upcoming European Academy of Allergy and Clinical Immunology Congress - Business Wire - May 24th, 2024 [May 24th, 2024]
- Biogen to buy Human Immunology Biosciences in deal worth up to $1.8B - MM+M Online - May 24th, 2024 [May 24th, 2024]
- COVID-19 Re-Vaccinations Elicit Neutralizing Antibodies Against Future Variants - Technology Networks - May 24th, 2024 [May 24th, 2024]
- HIV Vaccine Candidate Induces Broadly Neutralizing Antibodies in Humans - Technology Networks - May 24th, 2024 [May 24th, 2024]
- Pasteur Fiocruz Center on Immunology and Immunotherapy is inaugurated in Cear - Fiocruz - May 24th, 2024 [May 24th, 2024]
- Biogen to buy Human Immunology Biosciences in up to $1.8 billion deal - Marketscreener.com - May 24th, 2024 [May 24th, 2024]
- Fellow Focus in Four: Marat Kribis, MD, Rheumatology, Allergy and Immunology - Yale School of Medicine - April 15th, 2024 [April 15th, 2024]
- Long COVID Can Now Be Detected in the Blood - Technology Networks - April 15th, 2024 [April 15th, 2024]
- Rimjhim Agarwal selected as Major Symposium speaker at the American Association of Immunologists ... - La Jolla Institute for Immunology - March 29th, 2024 [March 29th, 2024]
- Seeking new horizons: Where innovators find opportunities in a fast-changing immunology landscape - IQVIA - March 29th, 2024 [March 29th, 2024]
- Researchers identify new way to inhibit immune cells that drive allergic asthma - EurekAlert - March 29th, 2024 [March 29th, 2024]
- Innovation in Oncology and Cancer Immunology Research - Boehringer Ingelheim - March 29th, 2024 [March 29th, 2024]
- Measles outbreaks show the risk of under-vaccination | News | Harvard T.H. Chan School of Public Health - HSPH News - March 29th, 2024 [March 29th, 2024]
- Immunology-oncology ELISA Kits Market to Witness a Healthy Growth by 2030 - WhaTech - March 29th, 2024 [March 29th, 2024]
- Spring Allergy Season Is Getting Worse. Here's What to Know. - The New York Times - March 29th, 2024 [March 29th, 2024]
- Multiple sclerosis has distinct subtypes, study finds, pointing to different treatments - STAT - March 29th, 2024 [March 29th, 2024]
- Researchers identify viable vaccine targets for hepatitis C infections - News-Medical.Net - March 29th, 2024 [March 29th, 2024]
- Three research projects awarded funding from the Immunology Institute Pilot Project program - University of Alabama at Birmingham - February 29th, 2024 [February 29th, 2024]
- Deal Watch: AbbVie Adds To Immunology Pipeline Through Deal With OSE - Scrip - February 29th, 2024 [February 29th, 2024]
- AbbVie and Tentarix Announce Collaboration to Develop Conditionally-Active, Multi-Specific Biologics for Oncology ... - PR Newswire - February 29th, 2024 [February 29th, 2024]
- Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system - Nature.com - February 29th, 2024 [February 29th, 2024]
- Renowned immunologist and four-decade UAB researcher Max Cooper, M.D., will deliver this year's Marx Lecture - University of Alabama at Birmingham - February 29th, 2024 [February 29th, 2024]
- Inactivation of TGF- signaling in CAR-T cells | Cellular & Molecular Immunology - Nature.com - February 29th, 2024 [February 29th, 2024]
- Babies use their immune system differently but efficiently | Cornell Chronicle - Cornell Chronicle - February 29th, 2024 [February 29th, 2024]
- Antibody reduces allergic reactions to multiple foods in NIH clinical trial - National Institutes of Health (NIH) (.gov) - February 29th, 2024 [February 29th, 2024]
- Mestag Therapeutics Enlists Leading Cancer Biology and Immunology Advisors to Support Clinical Development of its ... - GlobeNewswire - February 21st, 2024 [February 21st, 2024]
- Theratechnologies announces publication in Frontiers in Immunology on TH1902 - TipRanks.com - TipRanks - February 21st, 2024 [February 21st, 2024]
- Smoking has long-term effects on the immune system - Institut Pasteur - February 21st, 2024 [February 21st, 2024]
- Spring Allergies Attack More Than Just Your Nose - ACAAI Public Website - American College of Allergy Asthma and Immunology - February 21st, 2024 [February 21st, 2024]
- Theratechnologies Announces Publication in Frontiers in Immunology that Deepens Understanding of Sudocetaxel ... - GlobeNewswire - February 21st, 2024 [February 21st, 2024]
- Shikhar Mehrotra named co-leader of Cancer Biology and Immunology research program at MUSC Hollings - The Cancer Letter - January 27th, 2024 [January 27th, 2024]
- Gut Microbiome Benefits of Breast Milk Revealed in Mouse Study - Technology Networks - January 27th, 2024 [January 27th, 2024]
- Research on Immunological Diseases Launches with Hungarian Participation - Hungary Today - January 27th, 2024 [January 27th, 2024]
- UCLA to turn former shopping mall into centers for research on immunology and quantum science - The Associated Press - January 8th, 2024 [January 8th, 2024]
- TRexBio Announces a First Option Was Exercised by Partner under Immunology Discovery Collaboration - Business Wire - January 8th, 2024 [January 8th, 2024]
- UCLA to turn former Westside Pavilion into centers for research on immunology and quantum science - KABC-TV - January 8th, 2024 [January 8th, 2024]
- HI-Bio Announces $95 Million Series B Financing to Advance Targeted Therapies for Immune-Mediated Diseases - PR Newswire - January 8th, 2024 [January 8th, 2024]
- Beyond Cytotoxicity: The Importance of T Cell Memory - The Scientist - January 8th, 2024 [January 8th, 2024]
- IKAROS: Unlocking the secrets of the immune system's key player - News-Medical.Net - January 8th, 2024 [January 8th, 2024]
- UCLA to turn former shopping mall into centers for research on immunology and quantum science - The Caledonian-Record - January 8th, 2024 [January 8th, 2024]