Sponsored Content by OXGENEJun 1 2020
The relatively short history of gene replacement therapies is a story of the scientific enterprise, perseverance in the face of adversity, and revolutionary discoveries. It includes breakthroughs in cell biology, molecular biology, structural biology, biochemistry, immunology, oncology, virology, engineering, and biotechnology.
However, despite its hypothetical simplicity - overruling the disease-causing effect of an absent or damaged gene by inserting a properly functioning copy - there are still hardly any gene replacement therapies on the market, even though it has been thirty years since Rosenberg et al. proved the potential of retroviral based gene transduction in humans (Rosenberg et al. N Engl J Med 1990; 323:5708).
The early 1990s were simpler times for gene therapies. Both researchers and clinicians believed that they possessed the key to treating all genetic diseases. Start-ups, spinouts, academics, and investors rushed to engage in this encouraging new market, prompted by the opportunity to develop innovative treatments for gene-based disorders.
During this time, the majority of gene therapy trials employed adenoviruses to deliver the transgene into patients, a technique which was made possible by Professor Frank Graham in the 1970s, via his efforts to understand why some viruses are oncogenic, while others are not.
In 1973, Graham who, at the time, was a postdoc at the University of Leiden in the Netherlands was able to create an adenovirus-transformed immortal human cell line, the Human Embryonic Kidney (HEK)293 (Graham et al. J. Gen. Virol. 1977; 36 (1): 5974).
HEK293 cells can be easily transfected and include the adenoviral E1 genes, which enable replication-incompetent adenoviruses to continue to grow within these cells. These characteristics make them a clear choice for the production of the substantial quantities of a viral vector that are needed for human gene therapy.
While gene therapy was rapidly developing, the human genome project was underway, marking another extraordinary feat of scientific investigation. 2003 saw the first publication of the complete human genome sequence the result of fifteen years of global research collaboration.
Following this landmark publication, scientists not only had access to the sequence of every human gene, but there were also now maps which detailed the location of these genes within chromosomes, as well as linkage maps which allowed them to track the inheritance of genetic disease (Science. Apr. 11, 2003 and Nature Apr. 24 2003, full issues).
With the sheer amounts of information now available, it comes as no surprise that the gene therapy industry continued its work to revolutionize modern medicine. In 2003, the China State Food and Drug Administration was the first health authority in the world to specifically approve a gene therapy - an adenoviral vector called Gendicine, which carried the P53 tumor suppressor gene. However, it was not until 2017 that the U.S. Food and Drug Administration (FDA) approved its first gene therapy - Luxterna for retinal dystrophy - for use in the United States (source: genetherapy.net).
Despite many years of investment and research, the comparative lack of gene therapies currently available on the market, coupled with the cost of those that are available, are a testament to the challenges still hindering their development and manufacture.
A key challenge still to be overcome is that of ensuring cost-effective manufacture at the necessary speed, scale, and quality for clinical development. Gene therapies which target localized diseases and necessitate only small doses (like Luxterna), involve relatively simple manufacturing processes.
Published results from a successful hemophilia gene therapy trial in 2011 have, however, reinvigorated the gene therapy industry, as well as highlighting the requirement for innovative, scalable technologies which can support the manufacture of gene therapies for systemic diseases which necessitate high treatment doses (Nathwani et al. N Engl J Med 2011; 365:2357-2365).
Many gene therapy manufacturers currently rely on the scaling out of transient expression platforms. This is resource-intensive and expensive however, due to the significant amounts of GMP-grade plasmid DNA required, and/or the massive cell culture footprint needed by adherent cell cultures.
The future of gene therapy vector production unquestionably lies in stable, scalable manufacturing solutions.
OXGENE is a recognized expert in DNA design and engineering, development of cell lines, upstream and downstream processing, and automation. This expertise is leading the transformation of its fully optimized AAV and lentiviral transient expression platforms, moving them towards innovative technologies for scalable and stable manufacturing.
OXGENE is building on strong foundations. Its gene therapy production platforms are based on the proprietary SnapFast plasmid technology - modular plasmids that have been designed to function like molecular Lego, employing a catalog of characterized DNA elements which can be reliably and easily inserted into specific locations in the plasmid.
OXGENEs engineered AAV and lentiviral plasmids are able to considerably enhance packaging efficiency and viral titer, while its clonal HEK293 suspension cell line has been specifically chosen for optimal viral vector production.
Partnering with OXGENE in the early stages of gene therapy development facilitates the establishment and optimization of transient production, with validated production up to 10 L scale. This process enables straightforward transitioning to a stable technology platform designed for large scale clinical manufacture.
The additional regulatory advantage is gained, as a result of utilizing the same genetic system throughout clinical development. This is because the stable platform maintains the same base cell line and expression cassettes as the transient system.
Producer cell lines are an appealing substitute for transient transfection. Within producer cell lines, all the elements needed for viral vector production, including the transgene of interest, are stably incorporated into the cells genome.
Therefore, these need no transfection and a comparatively little manipulation in order to scale up and reliably produce sizable quantities of the viral vector, with reduced batch-to-batch variation and with considerably fewer cost implications.
OXGENE has successfully developed producer cell lines and stable packaging for lentiviral-based gene therapies. A stable lentiviral packaging cell line was generated by transfecting packaging plasmids reconfigured with inducible vsv-g and gag-pol and constitutive rev expression into the HEK293 cell line.
Next, single-cell clones were screened for growth kinetics, as well as stable and inducible expression of viral genes. After numerous rounds of testing and analysis, a single clonal lentiviral packaging cell line was selected to expand, characterize, and optimize further.
Process optimization has improved viral titer more than ten-fold to date. The sheer level of optimization involved in refining OXGENEs lentiviral packaging cell line makes this an ideal starting point from which to create producer cell lines by stably transfecting a transfer plasmid that contains a self-inactivating lentiviral genome and the transgene of interest.
After a further iteration of the cell line development process, clones which performed the best are expanded further, then transferred for process optimization and scaling up in order to maximize viral titer.
With AAV, however, a different approach was taken. Here, a novel Tetracycline-Enabled Repressible Adenovirus (TERA) system was used as the basis for a stable AAV production platform.
This makes use of an engineered Ad5 adenoviral helper plasmid which includes a switchable negative feedback loop in the viral genome, reducing helper adenovirus contamination to practically zero while increasing AAV yields. This system has also been shown to amplify both AAV rep and cap DNA from the cells chromosomes through the use of the well-established AAV Cis-Acting Replication Element (CARE).
This technology enables the stable integration of DNA into cells, as well as its subsequent amplification and concomitant high protein expression levels, which in turn provides a stable, scalable, and adenovirus contaminant-free manufacturing process for AAV.
To summarize, gene therapies are once again set to transform the treatment of some of the worlds most debilitating diseases. While manufacturing challenges have impeded their development and approval, OXGENE has continued to transform gene therapy manufacturing by pioneering the development of tightly controlled, meticulously optimized technologies which facilitate fully scalable, high-quality and cost-effective gene therapy manufacture meaning that ultimately, gene therapies can be made available to patients who require them.
OXGENE combines precision engineering and breakthrough science with advanced robotics and bioinformatics to accelerate the rational design, discovery and manufacture of cell and gene therapies across three core areas: gene therapy, gene editing and antibody therapeutics.
Gene therapy: Were transforming the vision of truly scalable gene therapies into a reality; progressing our industry leading transient gene therapy systems towards alternative technologies for scalable, stable manufacturing solutions.
Gene editing: We have automated gene editing to deliver CRISPR engineered cell lines at unparalleled speed, scale and quality and generate complex disease models in mammalian cells.
Antibody therapeutics: Were employing a novel proprietary mammalian display technology to discover antibodies against previously intractable membrane proteins.
OXGENE works at the edge of impossible in mammalian cell engineering. Our scientific expertise and technology solutions address industry bottlenecks. For more information, please visit http://www.oxgene.com
Sponsored Content Policy: News-Medical.net publishes articles and related content that may be derived from sources where we have existing commercial relationships, provided such content adds value to the core editorial ethos of News-Medical.Net which is to educate and inform site visitors interested in medical research, science, medical devices and treatments.
The rest is here:
A Short History of Gene Therapies - News-Medical.net
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]