Daphne Koller is best known as the cofounder of Coursera, the open database for online learning that launched in 2012. But before her work on Coursera, she was doing something much different. In 2000, Koller started working on applying machine learning to biomedical data sets to understand gene activity across cancer types. She put that work on hold to nurture Coursera, which took many more years than she initially thought it would. She didnt return to biology until 2016 when she joined Alphabets life science research and development arm Calico.
Daphne Koller [Photo: couretsy of Insitro]Two years later, Koller started Insitro, a drug discovery and development company that combines biology with machine learning. Im actually coming back to this space, she says.
Theres a lot of hope that artificial intelligence could help speed up the time it takes to make a drug and also increase the rate of success. Several startups have emerged to capitalize on this opportunity. But Insitro is a bit different from some of these other companies, which rely more heavily on machine learning than biology
By contrast, Insitro has taken the time to build a cutting-edge laboratory, an expensive and time-consuming project. Still, having equal competency in lab-based science and computer science may prove to be the winning ticket. Though only two years old, Insitro has already caught the attention of old-guard pharmaceutical companies. Last year, the company struck a deal with pharmaceutical giant Gilead to develop tools and hopefully new drug targets to help stop the progression of non-alcoholic fatty liver disease (NASH). The partnership netted Insitro $15 million with the potential to earn up to $200 million for each drug target.
I spokewith Koller to discuss what her company is doing differently and where machine learning may ultimately make a difference in drug development and discovery. This interview has been edited for publication.
Fast Company: What youre doing is different than most artificial intelligence drug companies, which are using the existing knowledge base of articles and published studies to come up with drug targets. Instead, youve developed a drug company that uses artificial intelligence but also has a full lab for biologists. Why did you take this approach?
Daphne Koller: The other model is a much easier startup effort in the sense that theres all this data out there and you can go and collect it. You can do it with a team of purely data-science folks. You dont need to build up a wet lab, you just go and collect all those data and you put them in a big pile, and then you let your machine learning people have at it.
What were doing is much more complicated and ambitious on a number of different dimensions. One is that we really did need to build up a high-throughput biology lab, which is beyond the frontier on multiple levels. That requires a much more expensive build. It also requires building up a team thats really not been built before, which is taking some people who are at the cutting edge of their field, on the biology side, and putting them together in a single integrated team with some people who are at the cutting edge of machine learning and data science, and really telling them, you speak different languages, but youre going to work together as a single team. And I think thats really a very challenging cultural effort that most companies havent been willing or able to pursue.
FC: Why do that? Whats the benefit of having a drug company that gives biologists and data scientists and machine-learning experts equal standing?
DK: When you look at the drug discovery processwhich, if youre lucky, is 15 years end-to-end with a 5% chance of successthere are multiple forks in the road where currently people are making decisions. Do I go down path A or B or C or D? And if youre lucky, one path in 99 will lead you to success. If you go down the wrong one, then its years and tens of millions of dollars in wasted spend. So what if we could make better predictions on which fork to take?
Part of the problem biopharma has had is that its really difficult to fail fast.
What we hope to be able to do, because were building these predictive models, is to be able to make the decisions faster.
The other piece is that machine learning has become pretty good at making accurate predictions across a broad spectrum of domains. Its not been as effectively applied so far in life sciences broadly, and one of the main reasons for that is just the lack of high-quality data that we have [compared to] computer vision or natural language processing or logistics. At the same time, the bioengineering cell biology community has invented in the past few years a remarkable suite of tools that can really be put together in unique and interesting ways to generate massive amounts of data that can help feed those machine-learning algorithms.
If you put those two together, the high-throughput biology piece and the machine-learning piece, perhaps that provides a way in which we could build these predictive models that make better predictions in pharma research and development.
FC: What is the biggest reasons that drugs fail?
DK: We know from the statistics that most drugs [that go into trials] fail because of lack of efficacy in phase two or phase three. And its not because the drug wasnt good. It was targeting the wrong target. Where the machine learning comes in is to look holistically at many, many different attributes of those cells and say which of them are the most predictive of human clinical outcome. And that is something that people are really not that good at, because cells are complex and theres many dimensions to putting all those pieces together to detect what oftentimes is a subtle signal. Its not something that people excel in.
FC: So once you set up these apps, how can you use them?
DK: You can use those apps in a variety of ways. First of all, you could use them to identify targets by basically saying, Hey, now we know what a sick cell looks like. Now we know what a healthy cell looks like. What if I [use] CRISPR to perturb the cell to move from an active to an inactive state or vice versa? Well, if you do that, and the phenotype goes from an unhealthy to a healthy state, maybe that gene is a good target for a drug.
People think that Alzheimers is one diseasealmost certainly, thats not true.
People think that Alzheimers is one diseasealmost certainly, thats not true. People think that type two diabetes is one diseasealso probably not true. For these diseases, we havent yet identified subtypes. We believe that by collecting enough data on enough different genetics at the molecular level, maybe those subtypes will emerge.
FC:Do you have any insight around the role that machine learning can play in helping come up with either a treatment or a vaccine for COVID-19?
DK: I think that there are opportunities. Right now, [the larger health care community is] looking at vaccine approaches that different companies have developed, and were putting them in with a bunch of viral protein and hoping for the best. To predict vaccine efficacythe techniques just dont exist, and theres not going to be enough time to develop them. But I do think that theres some interesting work thats happening on the therapeutic side, where theres been more work on the application of machine learning to everything from the interpretation of cellular [gene expression]. There is potential for designing new drugs, new drug combinations, and even just interpretation of the cellular state.
FC: Youre working with Gilead on better understanding nonalcoholic fatty liver disease (NASH). Whats difficult about NASH is that it can only be diagnosed and monitored through liver biopsy, which is brutal for the patient. Youve said that youve had some success with machine-learning apps being able to detect aspects of the disease that a human cannot otherwise detect, which holds a lot of promise for changing even just the way doctors track the disease in individuals. Im curious what are other areas of human health are interesting to you?
DK: We feel like neuroscience is an area thats about to burst wide open in finally understanding the very complex genetics of Central Nervous System diseases. The unmet need is huge, and the animal models are particularly untranslatable. So for some diseases you could say, Well, the animal model is not great, but its acceptable. The animal model for depressionand this is going to sound surreal, but Im telling you, its not its to take a mouse and you put in a bucket with water and you make it swim until it gets really tired and drowns. And if its swims longer, its less depressed.Its called the forced swim test.
Now, the thing is, if you look at depression, it is a disease with significant genetic heritability where we know that theres hundreds of genes that are implicated with very specific pathways, and stuff that is all now starting to emerge from the genetics and single cell analysis of brain tissue. None of that has anything to do with making a mouse swim longer. We think that in things like neuro-degeneration and neuropsychiatry theres a tremendous opportunity for a different set of tools to be applied. I guarantee you, they will not be perfect models of the disease. But they cant be that much worse than making a mouse swim longer. Right?
Here is the original post:
Insitro' s Daphne Koller on AI and drug discovery - Fast Company
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]