Sugars and fats are the primary fuels that power every cell, tissue and organ. For most cells, sugar is the energy source of choice, but when nutrients are scarce, such as during starvation or extreme exertion, cells will switch to breaking down fats instead.
The mechanisms for how cells rewire their metabolism in response to changes in resource availability are not yet fully understood, but new research reveals a surprising consequence when one such mechanism is turned off: an increased capacity for endurance exercise.
In a study published in Cell Metabolism, Harvard Medical School researchers identifiedacritical role oftheenzyme, prolyl hydroxylase 3 (PHD3), in sensing nutrient availability and regulating the ability of muscle cells to break down fats. When nutrients are abundant, PHD3 acts as a brake that inhibits unnecessary fat metabolism. This brake is released when fuel is low and more energy is needed, such as during exercise.
Remarkably, blocking PHD3 production in miceleadsto dramatic improvements in certain measures of fitness, the research showed. Compared with their normal littermates, mice lacking the PHD3 enzyme ran 40 percent longer and 50 percent farther on treadmills andhadhigher VO2 max, a marker of aerobic endurance that measures maximum oxygen uptake during exercise.
The findings shed light on a key mechanism for how cells metabolize fuels and offer clues toward a better understanding of muscle function and fitness, the authors said.
Our results suggest that PHD3 inhibition in whole body or skeletal muscle is beneficial for fitness in terms of endurance exercise capacity, running time and running distance, said senior study authorMarcia Haigis, professor of cell biology in the Blavatnik Institute at HMS. Understanding this pathway and how our cells metabolize energy and fuels potentially has broad applications in biology, ranging from cancer control to exercise physiology.
However, further studies are needed to elucidate whetherthis pathway canbe manipulated in humans to improve muscle function in disease settings, the authors said.
Haigis and colleagues set out to investigate the function of PHD3, an enzyme that they had found to play a role regulating fat metabolism in certaincancersin previous studies. Their work showed that, under normal conditions, PHD3 chemically modifies another enzyme, ACC2, which in turn prevents fatty acids from entering mitochondria to be broken down into energy.
In the current study, the researchers experiments revealed that PHD3 and another enzyme called AMPK simultaneously control the activity of ACC2 to regulate fat metabolism, depending on energy availability.
In isolated mouse cells grown in sugar-rich conditions, the team found that PHD3 chemically modifies ACC2 to inhibit fat metabolism. Under low-sugar conditions, however, AMPK activates and places a different, opposing chemical modification on ACC2, which represses PHD3 activity and allows fatty acids to enter the mitochondria to be broken down for energy.
These observations were confirmed in live mice that were fasted to induce energy-deficient conditions. In fasted mice, the PHD3-dependent chemical modification to ACC2 was significantly reduced in skeletal and heart muscle, compared to fed mice. By contrast, the AMPK-dependent modification to ACC2 increased.
Longer and further
Next, the researchers explored the consequences when PHD3 activity was inhibited, using genetically modified mice that do not express PHD3. Because PHD3 is most highly expressed in skeletal muscle cells and AMPK has previously been shown to increase energy expenditure and exercise tolerance, the team carried out a series of endurance exercise experiments.
The question we asked was if we knock out PHD3, Haigis said, would that increase fat burning capacity and energy production and have a beneficial effect in skeletal muscle, which relies on energy for musclefunctionand exercisecapacity?
To investigate, the team trained young, PHD3-deficient mice to run on an inclined treadmill. They found that these mice ran significantly longer and further before reaching the point of exhaustion, compared to mice with normal PHD3. These PHD3-deficient mice also had higher oxygen consumption rates, as reflected by increased VO2 and VO2 max.
Aftertheendurance exercise, the muscles of PHD3-deficient mice had increased rates of fat metabolism and an altered fatty acid composition and metabolic profile. The PHD3-dependent modification to ACC2 was nearly undetectable, but the AMPK-dependent modification increased, suggesting that changes to fat metabolism play a role in improving exercise capacity.
These observations held true in mice genetically modified to specifically prevent PHD3 production in skeletal muscle, demonstrating that PHD3 loss in muscle tissues is sufficient to boost exercise capacity, according to the authors.
It was exciting to see this big, dramatic effect on exercise capacity, which could be recapitulated with a muscle-specific PHD3 knockout, Haigis said. The effect of PHD3 loss was very robust and reproducible.
The research team also performed a series of molecular analyses to detail the precise molecular interactions that allow PHD3 to modify ACC2, as well as how its activity is repressed by AMPK.
The study results suggest a new potential approach for enhancingexercise performance by inhibiting PHD3.While the findings are intriguing, the authors note that further studies are needed to better understand precisely how blocking PHD3 causes a beneficial effect on exercise capacity.
In addition, Haigis and colleagues found in previous studies that in certain cancers, such as some forms of leukemia, mutated cells express significantly lower levels of PHD3 and consume fats to fuel aberrant growth and proliferation. Efforts to control this pathway as a potential strategy for treating such cancers may help inform research in other areas, such as muscle disorders.
It remains unclear whether there are any negative effects of PHD3 loss. To know whether PHD3 can be manipulated in humansfor performance enhancement in athletic activities or as a treatment for certain diseases will require additional studies in a variety of contexts, the authors said.
It also remains unclear if PHD3 loss triggers other changes, such as weight loss, blood sugar and other metabolic markers, which are now being explored by the team.
A better understanding of these processes and the mechanisms underlying PHD3 function could someday help unlock new applications in humans, such as novel strategies for treating muscle disorders, Haigis said.
Reference: Yoon et al. (2020).PHD3 Loss Promotes Exercise Capacity and Fat Oxidation in Skeletal Muscle. Cell Metabolism.DOI: 10.1016/j.cmet.2020.06.017.
This article has been republished from the following materials. Note: material may have been edited for length and content. For further information, please contact the cited source.
More:
Loss of Enzyme Increases Metabolism and Exercise Endurance in Mice - Technology Networks
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]