'Disease tolerance' is the ability of an individual, due to a genetic predisposition or some aspect of behavior or lifestyle, to thrive despite being infected with an amount of pathogen that sickens others. It might play a role in asymptomatic coronavirus infections. Alexander Spatari/Getty Images hide caption
'Disease tolerance' is the ability of an individual, due to a genetic predisposition or some aspect of behavior or lifestyle, to thrive despite being infected with an amount of pathogen that sickens others. It might play a role in asymptomatic coronavirus infections.
One of the reasons Covid-19 has spread so swiftly around the globe is that for the first days after infection, people feel healthy. Instead of staying home in bed, they may be out and about, unknowingly passing the virus along. But in addition to these pre-symptomatic patients, the relentless silent spread of this pandemic is also facilitated by a more mysterious group of people: the so-called asymptomatics.
According to various estimates, between 20 and 45 percent of the people who get COVID-19 and possibly more, according to a recent study from the Centers for Disease Control and Prevention sail through a coronavirus infection without realizing they ever had it. No fever or chills. No loss of smell or taste. No breathing difficulties. They don't feel a thing.
Asymptomatic cases are not unique to COVID-19. They occur with the regular flu, and probably also featured in the 1918 pandemic, according to epidemiologist Neil Ferguson of Imperial College London. But scientists aren't sure why certain people weather COVID-19 unscathed. "That is a tremendous mystery at this point," says Donald Thea, an infectious disease expert at Boston University's School of Public Health.
The prevailing theory is that their immune systems fight off the virus so efficiently that they never get sick. But some scientists are confident that the immune system's aggressive response, the churning out of antibodies and other molecules to eliminate an infection, is only part of the story.
These experts are learning that the human body may not always wage an all-out war on viruses and other pathogens. It may also be capable of accommodating an infection, sometimes so seamlessly that no symptoms emerge. This phenomenon, known as disease tolerance, is well-known in plants but has only been documented in animals within the last 15 years.
Hints that 'disease tolerance' is at work
Disease tolerance is the ability of an individual, due to a genetic predisposition or some aspect of behavior or lifestyle, to thrive despite being infected with an amount of pathogen that sickens others. Tolerance takes different forms, depending on the infection. For example, when infected with cholera, which causes watery diarrhea that can quickly kill through dehydration, the body might mobilize mechanisms that maintain fluid and electrolyte balance. During other infections, the body might tweak metabolism or activate gut microbes whatever internal adjustment is needed to prevent or repair tissue damage or to make a germ less vicious.
"Why, if they have these abnormalities, are they healthy? Potentially because they have disease tolerance mechanisms engaged. These are the people we need to study."
Janelle Ayres, physiologist, Salk Institute for Biological Studies
Researchers who study these processes rely on invasive experiments that cannot be done in people. Nevertheless, they view asymptomatic infections as evidence that disease tolerance occurs in humans. At least 90 percent of those infected with the tuberculosis bacterium don't get sick. The same is true for many of the 1.5 billion of people globally who live with parasitic worms called helminths in their intestines. "Despite the fact that these worms are very large organisms and they basically migrate through your tissues and cause damage, many people are asymptomatic. They don't even know they're infected," says Irah King, a professor of immunology at McGill University. "And so then the question becomes, what does the body do to tolerate these types of invasive infections?"
While scientists have observed the physiological processes that minimize tissue damage during infections in animals for decades, it's only more recently that they've begun to think about them in terms of disease tolerance. For example, King and colleagues have identified specific immune cells in mice that increase the resilience of blood vessels during a helminth infection, leading to less intestinal bleeding, even when the same number of worms are present.
"This has been demonstrated in plants, bacteria, other mammalian species," King says.
"Why would we think that humans would not have developed these types of mechanisms to promote and maintain our health in the face of infection?" he adds.
Maybe germs aren't the enemy: A more nuanced view
In a recent Frontiers in Immunology editorial, King and his McGill colleague Maziar Divangahi describe their long-term hopes for the field: A deeper understanding of disease tolerance, they write, could lead to "a new golden age of infectious disease research and discovery."
Scientists have traditionally viewed germs as the enemy, an approach that has generated invaluable antibiotics and vaccines. But more recently, researchers have come to understand that the human body is colonized by trillions of microbes that are essential to optimal health, and that the relationship between humans and germs is more nuanced.
Meddlesome viruses and bacteria have been around since life began, so it makes sense that animals evolved ways to manage as well as fight them. Attacking a pathogen can be effective, but it can also backfire. For one thing, infectious agents find ways to evade the immune system. Moreover, the immune response itself, if unchecked, can turn lethal, applying its destructive force to the body's own organs.
"With things like COVID, I think it's going to be very parallel to TB, where you have this Goldilocks situation," says Andrew Olive, an immunologist at Michigan State University, "where you need that perfect amount of inflammation to control the virus and not damage the lungs."
Some of the key disease tolerance mechanisms scientists have identified aim to keep inflammation within that narrow window. For example, immune cells called alveolar macrophages in the lung suppress inflammation once the threat posed by the pathogen diminishes.
Much is still unknown about why there is such a wide range of responses to COVID-19, from asymptomatic to mildly sick to out of commission for weeks at home to full-on organ failure. "It's very, very early days here," says Andrew Read, an infectious disease expert at Pennsylvania State University who helped identify disease tolerance in animals. Read believes disease tolerance may at least partially explain why some infected people have mild symptoms or none at all. This may be because they're better at scavenging toxic byproducts, he says, "or replenishing their lung tissues at faster rates, those sorts of things."
Asymptomatic COVID-19 infections
The mainstream scientific view of asymptomatics is that their immune systems are especially well-tuned. This could explain why children and young adults make up the majority of people without symptoms because the immune system naturally deteriorates with age. It's also possible that the immune systems of asymptomatics have been primed by a previous infection with a milder coronavirus, like those that cause the common cold.
Asymptomatic cases don't get much attention from medical researchers, in part because these people don't go to the doctor and thus are tough to track down. But Janelle Ayres, a physiologist and infectious disease expert at the Salk Institute For Biological Studies who has been a leader in disease tolerance research, studies precisely the mice that don't get sick.
The staple of this research is something called the "lethal dose 50" test, which consists of giving a group of mice enough pathogen to kill half. By comparing the mice that live with those that die, she pinpoints the specific aspects of their physiology that enable them to survive the infection. She has performed this experiment scores of times using a variety of pathogens. The goal is to figure out how to activate health-sustaining responses in all animals.
A hallmark of these experiments and something that surprised her at first is that the half that survive the lethal dose are perky. They are completely unruffled by the same quantity of pathogen that kills their counterparts. "I thought going into this ... that all would get sick, that half would live and half would die, but that isn't what I found," Ayres says. "I found that half got sick and died, and the other half never got sick and lived."
Ayres sees something similar happening in the COVID-19 pandemic. Like her mice, asymptomatic people infected with the novel coronavirus seem to have similar amounts of the virus in their bodies as the people who fall ill, yet for some reason they stay healthy. Studies show that their lungs often display damage on CT scans, yet they are not struggling for breath (though it remains to be seen whether they will fully escape long-term impacts). Moreover, a small recent study suggests that people who are asymptomatic mount a weaker immune response than those who get sick suggesting that mechanisms are at work that have nothing to do with fighting infection.
"Why, if they have these abnormalities, are they healthy?" asks Ayres. "Potentially because they have disease tolerance mechanisms engaged. These are the people we need to study."
The goal of disease tolerance research is to decipher the mechanisms that keep infected people healthy and turn them into therapies that benefit everyone. "You want to have a drought-tolerant plant, for obvious reasons, so why wouldn't we want to have a virus-tolerant person?" Read asks.
A 2018 experiment in Ayres' lab offered proof of concept for that goal. The team gave a diarrhea-causing infection to mice in a lethal dose 50 trial, then compared tissue from the mice that died with those that survived, looking for differences. They discovered that the asymptomatic mice had utilized their iron stores to route extra glucose to the hungry bacteria, and that the pacified germs no longer posed a threat. The team subsequently turned this observation into a treatment. In further experiments, they administered iron supplements to the mice and all the animals survived, even when the pathogen dose was upped a thousandfold.
When the pandemic hit, Ayres was already studying mice with pneumonia and the signature malady of COVID-19, acute respiratory distress syndrome, which can be triggered by various infections. Her lab has identified markers that may inform candidate pathways to target for treatment. The next step is to compare people who progressed to severe stages of COVID-19 with those who are asymptomatic to see whether markers emerge that resemble the ones she's found in mice.
If a medicine is developed, it would work differently from anything that's currently on the market because it would be lung-specific, not disease-specific, and would ease respiratory distress regardless of which pathogen is responsible.
But intriguing as this prospect is, most experts caution that disease tolerance is a new field and tangible benefits are likely many years off. The work involves measuring not only symptoms but the levels of a pathogen in the body, which means killing an animal and searching all of its tissues. "You can't really do controlled biological experiments in humans," Olive says.
In addition, there are countless disease tolerance pathways. "Every time we figure one out, we find we have 10 more things we don't understand," King says. Things will differ with each disease, he adds, "so that becomes a bit overwhelming."
Nevertheless, a growing number of experts agree that disease tolerance research could have profound implications for treating infectious disease in the future. Microbiology and infectious disease research has "all been focused on the pathogen as an invader that has to be eliminated some way," says virologist Jeremy Luban of the University of Massachusetts Medical School. And as Ayres makes clear, he says, "what we really should be thinking about is how do we keep the person from getting sick."
Emily Laber-Warren directs the health and science reporting program at the Craig Newmark Graduate School of Journalism at CUNY.
This story was produced by Undark, a nonprofit, editorially independent digital magazine exploring the intersection of science and society.
More here:
Asymptomatic COVID-19 Infections And 'Disease Tolerance' : Shots - Health News - NPR
- Cross-priming in cancer immunology and immunotherapy - Nature.com - February 3rd, 2025 [February 3rd, 2025]
- Sanofi Happy To Spend To Hit Immunology Top Spot - News & Insights - February 3rd, 2025 [February 3rd, 2025]
- The Converging Therapeutic Landscape of Oncology and Immunology: Accelerating Innovation in Biotech - MedCity News - January 23rd, 2025 [January 23rd, 2025]
- VC Firm Foresite Capital Dishes on Biotech Innovation in China, Opportunities in Immunology - MedCity News - January 23rd, 2025 [January 23rd, 2025]
- Immunology - The Scientist - January 23rd, 2025 [January 23rd, 2025]
- Immunology Startup Ouro Sets Out With $120M for Drugs That Reset the Immune System - MedCity News - January 15th, 2025 [January 15th, 2025]
- Scipher Medicine and Atropos Health Partner to Accelerate Precision Medicine and Expand the Immunology Multimodal Network - Business Wire - December 23rd, 2024 [December 23rd, 2024]
- AbbVie to expand immunology pipeline with $200m Nimble Therapeutics acquisition - PMLiVE - December 23rd, 2024 [December 23rd, 2024]
- Sir Gustav Nossal Professor of Immunology to honour giant of Australian science - Walter and Eliza Hall Institute of Medical Research - December 9th, 2024 [December 9th, 2024]
- Research Assistant in Immunology - Surrey, United Kingdom job with UNIVERSITY OF SURREY | 384335 - Times Higher Education - November 28th, 2024 [November 28th, 2024]
- Reflecting on Pioneering organoids and 3D cell cultures for animal and human health - British Society for Immunology | - November 28th, 2024 [November 28th, 2024]
- Innate Pharma Announces Publication in Science Immunology Highlighting Innovative Next-generation ANKET - Business Wire - November 20th, 2024 [November 20th, 2024]
- TRexBio Announces $84 Million Series B Financing to Advance Pipeline of First-in-Class Immunology Programs into Clinical Development - Business Wire - November 20th, 2024 [November 20th, 2024]
- Discovering Solutions for Long COVID: A T-Cell Immunology Breakthrough - Infection Control Today - November 20th, 2024 [November 20th, 2024]
- Innate Pharma Announces Publication in Science Immunology Highlighting Innovative Next-generation ANKET IPH6501 - The Bakersfield Californian - November 20th, 2024 [November 20th, 2024]
- Immunology Data Shows INOVIO's INO-3107 Induced Expansion of New Clonal T Cells That Infiltrate Airway Tissue and Correspond With Reduction of... - November 20th, 2024 [November 20th, 2024]
- What it's like in allergy and immunology: Shadowing Dr. Fraser - American Medical Association - November 12th, 2024 [November 12th, 2024]
- Dr. Naba Sharif Elected President of the New Jersey Allergy Asthma and Immunology Society - Newswire - November 12th, 2024 [November 12th, 2024]
- Department of Microbiology and Immunology Named a National Milestones Program - Stony Brook News - October 26th, 2024 [October 26th, 2024]
- Astria Therapeutics to Present at Upcoming American College of Allergy, Asthma, and Immunology Annual Scientific Meeting - businesswire.com - October 26th, 2024 [October 26th, 2024]
- Remembering immunology educator, researcher Tom McDonald, PhD - University of Nebraska Medical Center - October 13th, 2024 [October 13th, 2024]
- Systems immunology approaches to study T cells in health and disease - Nature.com - October 13th, 2024 [October 13th, 2024]
- Leading the charge to discover answers in immunology - The University of Arizona - October 2nd, 2024 [October 2nd, 2024]
- New mouse models offer valuable window into COVID-19 infection - La Jolla Institute for Immunology - October 2nd, 2024 [October 2nd, 2024]
- Wide-Moat AbbVie Poised for Growth, Driven by Innovation in Immunology Beyond Humira - Morningstar - October 2nd, 2024 [October 2nd, 2024]
- Lilly's immunology unit scores another FDA nod with eczema treatment Ebglyss - FiercePharma - September 23rd, 2024 [September 23rd, 2024]
- Huang Named Head Of Pathology And Immunology - Mirage News - September 15th, 2024 [September 15th, 2024]
- Huang named head of pathology & immunology - Washington University School of Medicine in St. Louis - September 15th, 2024 [September 15th, 2024]
- Apogee Therapeutics to Participate at the Stifel 2024 Immunology and Inflammation Summit - Yahoo Finance - September 15th, 2024 [September 15th, 2024]
- Eliem Therapeutics to Participate at the Stifel 2024 Virtual Immunology and Inflammation Summit - StockTitan - September 15th, 2024 [September 15th, 2024]
- UCLA receives $120 million from Alya and Gary Michelson for new California Institute for Immunology and Immunotherapy - UCLA Newsroom - September 2nd, 2024 [September 2nd, 2024]
- Boosting vaccines for the elderly with 'hyperactivators' - Boston Children's Answers - Boston Children's Discoveries - June 27th, 2024 [June 27th, 2024]
- Immunologists Want You to Know These Dust Mite Allergy Facts - Yahoo Lifestyle UK - June 27th, 2024 [June 27th, 2024]
- How Ragon Institute's new building aids its mission Harvard Gazette - Harvard Gazette - June 27th, 2024 [June 27th, 2024]
- Insights into CRS and NPs: Visual and Bibliometric Analysis - Physician's Weekly - June 27th, 2024 [June 27th, 2024]
- Biogen joins immunology wave with $1.15 billion acquisition of HI-Bio - STAT - May 24th, 2024 [May 24th, 2024]
- Biogen Buys Desired Growth In Immunology With $1.15bn Hi-Bio Deal - Scrip - May 24th, 2024 [May 24th, 2024]
- Biogen Boosts Immunology Portfolio with $1.8 Billion Acquisition of HI-Bio - BioPharm International - May 24th, 2024 [May 24th, 2024]
- Owkin Unveils AI-Driven Oncology and Immunology Pipeline, In-Licenses Best-in-Class Asset OKN4395 - Yahoo Finance - May 24th, 2024 [May 24th, 2024]
- Biogen to expand immunology and rare disease portfolio with $1.8bn HI-Bio acquisition - PMLiVE - May 24th, 2024 [May 24th, 2024]
- Astria Therapeutics to Present at Upcoming European Academy of Allergy and Clinical Immunology Congress - Business Wire - May 24th, 2024 [May 24th, 2024]
- Biogen to buy Human Immunology Biosciences in deal worth up to $1.8B - MM+M Online - May 24th, 2024 [May 24th, 2024]
- COVID-19 Re-Vaccinations Elicit Neutralizing Antibodies Against Future Variants - Technology Networks - May 24th, 2024 [May 24th, 2024]
- HIV Vaccine Candidate Induces Broadly Neutralizing Antibodies in Humans - Technology Networks - May 24th, 2024 [May 24th, 2024]
- Pasteur Fiocruz Center on Immunology and Immunotherapy is inaugurated in Cear - Fiocruz - May 24th, 2024 [May 24th, 2024]
- Biogen to buy Human Immunology Biosciences in up to $1.8 billion deal - Marketscreener.com - May 24th, 2024 [May 24th, 2024]
- Fellow Focus in Four: Marat Kribis, MD, Rheumatology, Allergy and Immunology - Yale School of Medicine - April 15th, 2024 [April 15th, 2024]
- Long COVID Can Now Be Detected in the Blood - Technology Networks - April 15th, 2024 [April 15th, 2024]
- Rimjhim Agarwal selected as Major Symposium speaker at the American Association of Immunologists ... - La Jolla Institute for Immunology - March 29th, 2024 [March 29th, 2024]
- Seeking new horizons: Where innovators find opportunities in a fast-changing immunology landscape - IQVIA - March 29th, 2024 [March 29th, 2024]
- Researchers identify new way to inhibit immune cells that drive allergic asthma - EurekAlert - March 29th, 2024 [March 29th, 2024]
- Innovation in Oncology and Cancer Immunology Research - Boehringer Ingelheim - March 29th, 2024 [March 29th, 2024]
- Measles outbreaks show the risk of under-vaccination | News | Harvard T.H. Chan School of Public Health - HSPH News - March 29th, 2024 [March 29th, 2024]
- Immunology-oncology ELISA Kits Market to Witness a Healthy Growth by 2030 - WhaTech - March 29th, 2024 [March 29th, 2024]
- Spring Allergy Season Is Getting Worse. Here's What to Know. - The New York Times - March 29th, 2024 [March 29th, 2024]
- Multiple sclerosis has distinct subtypes, study finds, pointing to different treatments - STAT - March 29th, 2024 [March 29th, 2024]
- Researchers identify viable vaccine targets for hepatitis C infections - News-Medical.Net - March 29th, 2024 [March 29th, 2024]
- Three research projects awarded funding from the Immunology Institute Pilot Project program - University of Alabama at Birmingham - February 29th, 2024 [February 29th, 2024]
- Deal Watch: AbbVie Adds To Immunology Pipeline Through Deal With OSE - Scrip - February 29th, 2024 [February 29th, 2024]
- AbbVie and Tentarix Announce Collaboration to Develop Conditionally-Active, Multi-Specific Biologics for Oncology ... - PR Newswire - February 29th, 2024 [February 29th, 2024]
- Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system - Nature.com - February 29th, 2024 [February 29th, 2024]
- Renowned immunologist and four-decade UAB researcher Max Cooper, M.D., will deliver this year's Marx Lecture - University of Alabama at Birmingham - February 29th, 2024 [February 29th, 2024]
- Inactivation of TGF- signaling in CAR-T cells | Cellular & Molecular Immunology - Nature.com - February 29th, 2024 [February 29th, 2024]
- Babies use their immune system differently but efficiently | Cornell Chronicle - Cornell Chronicle - February 29th, 2024 [February 29th, 2024]
- Antibody reduces allergic reactions to multiple foods in NIH clinical trial - National Institutes of Health (NIH) (.gov) - February 29th, 2024 [February 29th, 2024]
- Mestag Therapeutics Enlists Leading Cancer Biology and Immunology Advisors to Support Clinical Development of its ... - GlobeNewswire - February 21st, 2024 [February 21st, 2024]
- Theratechnologies announces publication in Frontiers in Immunology on TH1902 - TipRanks.com - TipRanks - February 21st, 2024 [February 21st, 2024]
- Smoking has long-term effects on the immune system - Institut Pasteur - February 21st, 2024 [February 21st, 2024]
- Spring Allergies Attack More Than Just Your Nose - ACAAI Public Website - American College of Allergy Asthma and Immunology - February 21st, 2024 [February 21st, 2024]
- Theratechnologies Announces Publication in Frontiers in Immunology that Deepens Understanding of Sudocetaxel ... - GlobeNewswire - February 21st, 2024 [February 21st, 2024]
- Shikhar Mehrotra named co-leader of Cancer Biology and Immunology research program at MUSC Hollings - The Cancer Letter - January 27th, 2024 [January 27th, 2024]
- Gut Microbiome Benefits of Breast Milk Revealed in Mouse Study - Technology Networks - January 27th, 2024 [January 27th, 2024]
- Research on Immunological Diseases Launches with Hungarian Participation - Hungary Today - January 27th, 2024 [January 27th, 2024]
- UCLA to turn former shopping mall into centers for research on immunology and quantum science - The Associated Press - January 8th, 2024 [January 8th, 2024]
- TRexBio Announces a First Option Was Exercised by Partner under Immunology Discovery Collaboration - Business Wire - January 8th, 2024 [January 8th, 2024]
- UCLA to turn former Westside Pavilion into centers for research on immunology and quantum science - KABC-TV - January 8th, 2024 [January 8th, 2024]
- HI-Bio Announces $95 Million Series B Financing to Advance Targeted Therapies for Immune-Mediated Diseases - PR Newswire - January 8th, 2024 [January 8th, 2024]
- Beyond Cytotoxicity: The Importance of T Cell Memory - The Scientist - January 8th, 2024 [January 8th, 2024]
- IKAROS: Unlocking the secrets of the immune system's key player - News-Medical.Net - January 8th, 2024 [January 8th, 2024]
- UCLA to turn former shopping mall into centers for research on immunology and quantum science - The Caledonian-Record - January 8th, 2024 [January 8th, 2024]