Thermodynamics is the branch of physics that studies the relationship between heat and other forms of energy. It's especially focused on energy transfer and conversion and has a lot to contribute to the fields of chemical and mechanical engineering, physical chemistry, and biochemistry.
The term thermodynamics was likely first coined by mathematical physicist William Thompson, also known as Lord Kelvin, in his paper On the Dynamical Theory of Heat (1854).
Modern thermodynamics is based on four laws:
In this article, well be focusing on the first and second laws of thermodynamics.
The first law of thermodynamics is also known as the law of conservation of energy. Given that the energy cant be created or destroyed, the total energy of an isolated system will always be constant because, and can only be converted into another form of energy or transferred somewhere else in the system.
The formula of the first law of thermodynamics is U = Q W, where U is the change in internal energy U of the system, Q is the net heat transferred into the system (the sum of all the heat transfers of the system), and W is the net work done by the system (the sum of all work performed on or by the system).
The second law introduces the concept of entropy in thermodynamics. Entropy is a physical property that measures the amount of thermal energy in a system that is unavailable for doing useful work. The energy that cant do work turns into heat, and the heat increases the molecular disorder of the system. Entropy can also be thought of as a measurement of that disorder.
The second law of thermodynamics states that entropy is always increasing. This is because, in any isolated system, there is always a certain amount of energy that is not available to do work. Consequently, heat will always be produced and this naturally increases the disorder (or entropy) of the system.
The increasing entropy (S) equates to the heat transfer (Q) divided by the temperature (T). This is why the second law of thermodynamics can be expressed with the formula S =Q / T.
As stated above, the first law of thermodynamics closely relates to the law of conservation of energy, which was first expressed by Julius Robert Mayer in 1842.Mayer realized that a chemical reaction produces heat and work and that work can then produce a definite amount of heat. Although this is essentially a statement of the conservation of energy, Mayer was not part of the scientific establishment, and his work was ignored for some years.
Instead, German physicist Rudolf Clausius, Irish mathematician William Thomson (Lord Kelvin), and Scottish mechanical engineer William Rankine would have a greater role in developing the science of thermodynamics and adapting the conservation of energy to thermodynamic processes, starting in around 1850.
The second law of thermodynamics has its origin in the work of French mechanical engineerNicolas Lonard Sadi Carnot, who studied steam engines. He is often considered the father of thermodynamics due to his book Reflections on the Motive Power of Fire (1824),which presented a theoretical discussion of the perfect (but unattainable) heat engine Motive power is what wed call work nowadays, and fire refers to heat.
In this book, Sadi Carnot wrote an early statement of the second law of thermodynamics, which was reformulated by Rudolf Clausius more than forty years later. Other scientists also contributed to defining the law: the aforementioned Lord Kelvin (1851), German mathematician Max Planck (1897), and Greek mathematician Constantin Carathodory (1909).
According to thermal science researcher Jayaraman Srinivasan, the discovery of the first and second laws of thermodynamics was revolutionary in the physics of the 19th Century.
The third law of thermodynamics was developed by German chemist Walther Nernst at the beginning of the 20th century. Nernst demonstrated that the maximum work obtainable from a process could be calculated from the heat evolved at temperatures close to absolute zero. The zeroth law had been studied since the 1870s but was defined as a separate law during the 1900s.
The first and second laws of thermodynamics are independent of each other because the law of entropy is not directly derived or deduced from the law of conservation of energy or vice versa.
But at the same time, the two laws complement each other because, while the first law of thermodynamics includes the transfer or transformation of energy, the second law of thermodynamics talks about the directionality of physical changes how isolated or closed systems move from lower to higher entropy due to the energy that cant be used for work.
In other words, the second law of thermodynamics takes into account the fact that the energy transformation described in the first law of thermodynamics always releases some extra, useless energy that cant be converted into work.
The laws of physics explain how natural phenomena and machines work. These explanations not only satisfy our curiosity but also allow us to predict phenomena. In fact, they are instrumental in allowing us to build functional machinery.
As a branch of physics, thermodynamics is no exception for this. If you know how much energy in a system can be used for work, and how much will turn into heat (and theres always a certain amount of useless energy in a system), you can predict how much heat a given machine will produce under different conditions. Then, you can decide what to do with that heat.
Heat is a form of energy and if you know that energy cant be destroyed but only transformed, you could find a way to turn that thermal energy into mechanical energy which is what, in fact, heat engines do.
Given this basic application of the first and second laws of thermodynamics, you can probably imagine how useful they can be in the engineering field. But they can also have applications in chemistry, cosmology (entropy predicts the eventual heat death of the universe), atmospheric sciences, biology (plants convert radiant energy into chemical energy during photosynthesis), and many other fields. Hence the importance of thermodynamics
To break the first law of thermodynamics, wed have to create a "perpetual motion" machine that worked continuously without the input of any kind of power. That doesnt exist yet. All the machines that we know receive energy from a source (thermal, mechanical, electrical, chemical, etc.) and transform it into another form of energy. For example, steam engines convert thermal energy into mechanical energy.
To break the first law of thermodynamics, life itself would have to be reimagined. Living things also exist in concordance with the law of conservation of energy. Plants use photosynthesis to make food (chemical energy for their use) and animals and humans eat to survive.
Eating is basically extracting energy from food and converting it into chemical energy (stored as glucose) which is what actually gives us energy. We turn that chemical energy into mechanical energy when we move, and into thermal energy when we regulate our bodys temperature, etc.
But things may be a bit different in the quantum world. In 2002, chemical physicists of the Australian National University in Canberra demonstrated that the second law of thermodynamics can be briefly violated at the atomic scale. The scientists put latex beads in water and trapped them with a precise laser beam. Regularly measuring the movement of the beads and the entropy of the system, they observed that the change in entropy was negative over time intervals of a few tenths of a second.
More recently, researchers, including some working on Googles quantum processor Sycamore, created "time crystals", an out of equilibrium phase of matter cycling indefinitely between two energy states without losing any energy to the environment. These nanoparticles never reach thermal equilibrium. They form a quantum system that does not appear to increase its entropy which totally violates the second law of thermodynamics.
This is a real-life demonstration of Maxwell's demon, a thought experiment to break the second law of thermodynamics.
Proposed by Scottish mathematician James Clerk Maxwell in 1867, the experiment consisted of putting a demon in the middle of two chambers of gas. The demon controlled a massless door that allowed the chambers to exchange gas molecules. But given that the demon opened and closed the door so quickly, only fast-moving molecules passed through in one direction, and only slow-moving molecules passed through in the other. This way, one chamber heated up and the other cooled down, diminishing the total entropy of the two gases without involving work.
Although we still dont know exactly how to use time crystals, it is already considered a revolutionary discovery in condensed matter physics. Time crystals could, at the very least, significantly improve quantum computing technology.
But theres also something about the concept of perpetual motion without using any energy that unavoidably leads futuristic minds to imagine perpetual motion quantum devices which wont require any additional input of energy such as an unplugged refrigerator that is still able to cool your food down; or more science-fictiony, a supercomputer sustaining the simulation we could be living in.
Read the original post:
What the First Two Laws of Thermodynamics Are and Why They Matter - Interesting Engineering
- CU Boulder Biochemistry Professor Xuedong Liu Recognized as an elite member of the 2024 Class of Fellows by the National Academy of Investors (NAI) -... - December 23rd, 2024 [December 23rd, 2024]
- ACBICON 2024 Shines Bright: Celebrating 50 Years of Excellence in Clinical Biochemistry - :: India News Calling :: - December 9th, 2024 [December 9th, 2024]
- Teen achiever eyes global impact in medicine and biochemistry - Jamaica Gleaner - December 9th, 2024 [December 9th, 2024]
- Biochemistry senior connects with community through service organizations - University of South Carolina - November 28th, 2024 [November 28th, 2024]
- 2025 Summer Intern - Peptide Therapeutics, Early Discovery Biochemistry - Genentech - November 28th, 2024 [November 28th, 2024]
- Postdoctoral Position in Structural Biology/Biochemistry - Helsinki, Finland job with UNIVERSITY OF HELSINKI | 384233 - Times Higher Education - November 28th, 2024 [November 28th, 2024]
- Neugebauer named Rose Professor of Molecular Biophysics and Biochemistry - Yale News - November 28th, 2024 [November 28th, 2024]
- Scholarship has Timmins biochemistry student hopeful for the future - TimminsToday - November 20th, 2024 [November 20th, 2024]
- Lu Bai named Verne M. Willaman Professor of Biochemistry and Molecular Biology - Penn State University - November 12th, 2024 [November 12th, 2024]
- Biochemistry and biotechnology major Jay King nearing graduation with plans to pursue PhD in oncologic research - UMSL Daily - November 12th, 2024 [November 12th, 2024]
- A Biochemistry Teaching Experiment That Demonstrates the Digestion of Carbohydrates, Proteins, and Lipids in the Digestive Tract - ACS Publications - November 12th, 2024 [November 12th, 2024]
- SBU Biochemistry alumnus to discuss how plants defend themselves against bacterial pathogens - St. Bonaventure - October 13th, 2024 [October 13th, 2024]
- Exploring the Frontiers of Metabolic Research in Cancer: An Interview with Dr. Alice Chang, B. Pharm., Ph.D. at China Medical University, Institute of... - October 2nd, 2024 [October 2nd, 2024]
- The Hidden Biochemistry of Cold Temperatures: Chilling RNA Discovery Reshapes the Rules of Life - SciTechDaily - September 23rd, 2024 [September 23rd, 2024]
- New sweatband keeps tabs on body biochemistry - The Naked Scientists - September 15th, 2024 [September 15th, 2024]
- Celebrating 25 years of innovation at the department of biochemistry & medical genetics - UM Today - September 15th, 2024 [September 15th, 2024]
- Vinesh Phogat versus the perplexing biochemistry of losing weight - The Hindu - September 2nd, 2024 [September 2nd, 2024]
- Girirajan named head of the Department of Biochemistry and Molecular Biology - Penn State University - July 26th, 2024 [July 26th, 2024]
- Scientists uncover a multibillion-year epic written into the chemistry of life - EurekAlert - June 1st, 2024 [June 1st, 2024]
- Electrolyte and Biochemistry Analyzers Market Is Likely to Experience a Tremendous Growth by 2031 - openPR - June 1st, 2024 [June 1st, 2024]
- Scientists uncover missing link in the Chemistry of Life - Tech Explorist - June 1st, 2024 [June 1st, 2024]
- From negative results to new discoveries in chloroplast biochemistry - Phys.org - April 15th, 2024 [April 15th, 2024]
- Protecting art and passwords with biochemistry - Tech Xplore - April 15th, 2024 [April 15th, 2024]
- 'Always more to discover:' Clarke biochemistry professor shares love of the Bard through Dubuque Shakespeare Project - telegraphherald.com - April 15th, 2024 [April 15th, 2024]
- American Society of Biochemistry and Molecular Biology honors MD/PhD student Hannah Kondolf - The Daily | Case Western Reserve University - April 7th, 2024 [April 7th, 2024]
- Biochemistry and transcriptomic analyses of Phthorimaea absoluta (Lepidoptera: Gelechiidae) response to insecticides ... - Nature.com - April 7th, 2024 [April 7th, 2024]
- Differential responses of Hollyhock (Alcea rosea L.) varieties to salt stress in relation to physiological and biochemical ... - Nature.com - April 7th, 2024 [April 7th, 2024]
- Life's Origins: How Fissures in Hot Rocks May Have Kickstarted Biochemistry - Singularity Hub - April 7th, 2024 [April 7th, 2024]
- Professor Robert Cross awarded Biochemical Society Award for Sustained Excellence - University of Warwick - April 7th, 2024 [April 7th, 2024]
- Study suggests that estrogen may drive nicotine addiction in women - EurekAlert - March 29th, 2024 [March 29th, 2024]
- Yale men's basketball confused for university's Molecular Biophysics and Biochemistry on Twitter - Sporting News - March 29th, 2024 [March 29th, 2024]
- Plants have an astonishing biochemical communication network - Earth.com - March 29th, 2024 [March 29th, 2024]
- Study links long-term consumption of deep-fried oil with increased neurodegeneration - ASBMB Today - March 29th, 2024 [March 29th, 2024]
- New surfactant could improve lung treatments for premature babies - ASBMB Today - March 29th, 2024 [March 29th, 2024]
- The Power and Promise of RNA - Duke University School of Medicine - March 29th, 2024 [March 29th, 2024]
- Commonwealth University biochemistry and pre-medicine concentrations accredited - Lock Haven Express - February 13th, 2024 [February 13th, 2024]
- Afternoon of Science Series: Department of Biochemistry & Molecular Biophysics - Columbia University Irving Medical Center - February 13th, 2024 [February 13th, 2024]
- What Casual Sex, Pigeon Relationships, Bioluminescence and a Drug for Broken Hearts can Tell us About the ... - Nautilus - February 13th, 2024 [February 13th, 2024]
- $2.4 Million in Funding Awarded to Chemistry and Biochemistry Faculty | CSUF News - CSUF News - February 13th, 2024 [February 13th, 2024]
- Associate Professor in Biochemistry and Director of NIH-Funded COBRE job with UNIVERSITY OF NEW HAMPSHIRE ... - Nature.com - February 13th, 2024 [February 13th, 2024]
- USM Chemistry (Biochemistry Emphasis) Degree Earns ASBMB Reaccreditation - The University of Southern Mississippi - February 4th, 2024 [February 4th, 2024]
- AI generates proteins with exceptional binding strength - ASBMB Today - February 4th, 2024 [February 4th, 2024]
- A safe place where biochemistry is valued - ASBMB Today - October 27th, 2023 [October 27th, 2023]
- Chair (W3) of Biochemistry job with TECHNISCHE UNIVERSITAT ... - Times Higher Education - October 27th, 2023 [October 27th, 2023]
- The Biochemistry of Muscle Contraction - Discovery Institute - October 27th, 2023 [October 27th, 2023]
- Department of Biochemistry and Molecular Biology chair and ... - University of Iowa Health Care - October 27th, 2023 [October 27th, 2023]
- Two decorated Brandeis faculty awarded National Medal of Science ... - Brandeis University - October 27th, 2023 [October 27th, 2023]
- Research Assistant / Associate (Department of Biochemistry) job ... - Times Higher Education - October 27th, 2023 [October 27th, 2023]
- ASBMB weighs in on policy changes for dual-use research - ASBMB Today - October 27th, 2023 [October 27th, 2023]
- In the Locker Room with Katie Austin, Mia Brito, and Alaina Di Dio ... - The Oberlin Review - October 27th, 2023 [October 27th, 2023]
- Dr. Tara Schwetz named NIH Deputy Director for Program ... - National Institutes of Health (.gov) - October 27th, 2023 [October 27th, 2023]
- Armstrong Welcomes Burning Swamp The George-Anne Media ... - The George-Anne - October 27th, 2023 [October 27th, 2023]
- Summer Research Projects Grow Depth of Knowledge - Taylor University - October 27th, 2023 [October 27th, 2023]
- Brookings Register | Speakout: Decarbonize industry with nuclear ... - Brookings Register - October 27th, 2023 [October 27th, 2023]
- Professor Yong Sik Ok becomes the first Korean President of the ... - EurekAlert - October 27th, 2023 [October 27th, 2023]
- Partnership between UCR and City of Hope aims to increase ... - UC Riverside - October 27th, 2023 [October 27th, 2023]
- The seeds have been planted: The beautification of Ernst Nature ... - Miami Student - October 27th, 2023 [October 27th, 2023]
- Biochemist selected as Innovation Fund investigator by Pew ... - Pennsylvania State University - October 27th, 2023 [October 27th, 2023]
- UTHealth Houston researchers awarded $3.4M NIH grant to study ... - EurekAlert - October 27th, 2023 [October 27th, 2023]
- Centre professor, students working toward rapid, affordable ... - Danville Advocate - October 27th, 2023 [October 27th, 2023]
- SUNY Potsdam faculty want to keep 13 of 14 programs eyed for cuts ... - The Adirondack Daily Enterprise - October 27th, 2023 [October 27th, 2023]
- Fall Awards recognize long years of service to UWM - University of WisconsinMilwaukee - October 27th, 2023 [October 27th, 2023]
- Shobade selected for inaugural innovation in agriculture award - College of Agriculture and Life Sciences - April 8th, 2023 [April 8th, 2023]
- Three juniors selected as Goldwater Scholars - The Source ... - Washington University in St. Louis - April 8th, 2023 [April 8th, 2023]
- Senior Awarded Fulbright to Germany Susquehanna University - Susquehanna University - April 8th, 2023 [April 8th, 2023]
- CI MED Students Win Top Honors At Startup Showcase at ... - Carle Illinois College of Medicine - April 8th, 2023 [April 8th, 2023]
- Gregory Bowman: Penn Integrates Knowledge University Professor ... - University of Pennsylvania - April 8th, 2023 [April 8th, 2023]
- The Columns W&L's Jaden Keuhner '24 Featured in WSLS 10 ... - The Columns - April 8th, 2023 [April 8th, 2023]
- New anticancer agent activated by ultrasound waves does not have strong side effects - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Obituary for Alison Lynn Smoot-Pierce, Conway, SC - Arkansas Online - April 8th, 2023 [April 8th, 2023]
- Finding a way to combat long COVID - EurekAlert - April 8th, 2023 [April 8th, 2023]
- High schoolers awarded for action research | Sioux Center News - nwestiowa.com - April 8th, 2023 [April 8th, 2023]
- Emory researchers discover key pathway for COVID-19 organ ... - Emory News Center - April 8th, 2023 [April 8th, 2023]
- Auburn chemistry graduate student shines as only Southeastern ... - Office of Communications and Marketing - April 8th, 2023 [April 8th, 2023]
- Study uncovers aspect of how muscular dystrophies progress - ASBMB Today - April 8th, 2023 [April 8th, 2023]
- Broccoli intake protects the small intestine lining, inhibits development of disease - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- The Greek who gave $600 million to education - Kathimerini English Edition - April 8th, 2023 [April 8th, 2023]
- Man linked to firebombing of Wisconsin anti-abortion group via leftover burrito - Yahoo News - April 8th, 2023 [April 8th, 2023]
- Important enzyme for the composition of the gut microbiome discovered - Phys.org - April 8th, 2023 [April 8th, 2023]
- Unraveling the protein map of cell's powerhouse - ASBMB Today - April 8th, 2023 [April 8th, 2023]