Jay Shendure, a professor of genome sciences at UW Medicine, will be executive director of the Seattle Hub for Synthetic Biology. (UW Medicine Photo)
The Allen Institute, the Chan Zuckerberg Initiative and the University of Washington have launched a collaboration called the Seattle Hub for Synthetic Biology, with the goal of using genetically modified cells to capture a DNA-based record showing how they change over time.
If the project works out as hoped, it could lead to a deeper understanding of the mechanisms behind cellular processes including, for example, how tumors grow and point to new methods for fighting disease and promoting healthy cell growth.
Over the next five years, the Seattle Hub for Synthetic Biology will receive $35 million from the Allen Institute, and another $35 million from the Chan Zuckerberg Initiative, founded by Meta CEO Mark Zuckerberg and his wife, Priscilla Chan.
Jay Shendure, a professor of genome sciences at UW Medicine, will serve as the hubs executive director. Other members of the leadership team include Marion Pepper and Cole Trapnell, researchers at UW Medicine; and Jesse Gray, a veteran of Ascidian Therapeutics and Harvard Medical School. The collaboration will build on technology pioneered at the Allen Discovery Center for Cell Lineage Tracing and the Brotman Baty Institute for Precision Medicine.
Shendure compared the genetically modified cells to flight recorders on airplanes. He said such cells could, for example, be combined with CAR-T cells to track the progress of cancer therapy.
You could imagine layering them into CAR-T cells to provide a record of what happened, in the context of trying to deliver a certain therapeutic, he told GeekWire. And then you could imagine components of these cells, or more sophisticated versions, actually being used as part of the therapy where, when and how a therapeutic turns on or off is modulated at some level by a much more sophisticated set of machinery.
That sort of application is far down the road. In the nearer term, SeaHubs researchers aim to develop a new channel for chronicling the changes that cells go through. This channel would take an approach thats different from existing methods that depend on microscope imaging or sequencing a cells entire genome.
Shendure and his colleagues at UW have already created two techniques that could help turn elements of the genetic machinery inside cells into tiny time-lapse recording devices.
One of the techniques, known as DNA Typewriter, was the subject of a research paper in the journal Nature last year. The system makes use of gene-editing tools to lay down short snippets of DNA in chronological order, moving along a molecular string like the clicks of the carriage on an old-fashioned typewriter.
If you insert a five-base-pair sequence, thats four to the fifth, or 1,024. So there are 1,024 possible symbols that we could insert, Shendure said. When you punch a key, so to speak, you write a symbol one of those 1,024 possible insertions. Thats like the recording of information. And the same edit moves the type head one unit down the tape. Youre not just firing letters at a piece of paper, youre actually typing them in some coherent order.
The second technique is Engram. Without Engram, DNA Typewriter is like a monkey at a typewriter, just hitting keys, Shendure said. But with Engram, at least for some of the keys, we can say youre more likely to type this key if this particular signaling pathway is active, or youre only going to type this key if youre this particular cell type. So, were starting to learn how to assign meanings to keys, and to build a vocabulary of triggers between biological signals and symbols on our keyboard.
To read the recording, researchers could extract some of the recorder cells and check the sequence of DNA letters that were inserted over time.
Early practical applications of the cell-recording technologies are likely to focus on studying how cells multiply and develop into tissues under normal conditions, and how things go wrong due to disease.
Studying the growth of a cancerous tumor would be a great example, Shendure said. If you want to probe the history of one tumor obviously this would be in a model organism, but it could be a human cell transplanted in a mouse trying to accumulate that history over time is something that you would want to do, he said.
Researchers could track the development of different tumors on the cellular level, and study how different treatment strategies affect their growth. For that scenario, a strain of mice could be genetically engineered with cell-recording capability.
We make a mouse line that essentially has all this stuff stably, and the recording device can be turned on at any point, Shendure said. You could have it constituently on, so it switches on at the beginning, or you could use a small chemical to turn it on, like doxycycline.
Such methods could also be used to fine-tune tissue engineering. If were trying to make skin in a dish, or something like that, whats working? Whats not working? And how do you modulate it to improve the process? Shendure said.
Using such techniques for clinical treatment in humans is a long-term strategy. But how long-term? I dont think theyre as futuristic as they might seem, given everything thats going on, Shendure said.
Findings from the research effort will be shared widely within the scientific community. Its all going to be open science, fitting with the philosophy of the Allen Institute and CZI, Shendure said.
The Chan Zuckerberg Initiatives backing for the Seattle Hub for Synthetic Biology builds on the philanthropic organizations history of supporting big-picture biotech projects including a $3 billion effort aimed at curing, preventing and managing all diseases within a generation, and $15 million in grants that were awarded in 2018 to support a global research effort called the Human Cell Atlas.
By developing new technologies to measure and understand the history of our cells over time, including how they are impacted by the environment around them, genetic mutations and other factors, we can expand scientists understanding of what happens at the cellular level when we go from healthy to sick, and help pinpoint the earliest causes of disease, CZI co-founder and co-CEO Priscilla Chan said in a news release.
Rui Costa, president and chief executive officer of the Allen Institute, said he and his colleagues are incredibly excited to enter this new era of collaboration to tackle big moonshot projects in partnership with others.
UW President Ana Mari Cauce said the project demonstrates the enormous potential impact of values-driven partnerships, and it represents a new way of thinking about how we can solve problems more quickly and effectively through scientific collaboration.
Our shared values, paired with our complementary perspectives and strengths, are a recipe for success, and I cant wait to see what this team will accomplish together, Cauce said.
The effort should yield noticeable results within five years, Shendure said.
It could lead to basically a library of tools for engineering cell types, specific expression, et cetera. I think therell be these deliverables that are broadly useful for the field, he said.
Shendure hopes researchers at the Seattle Hub for Synthetic Biology will come up with specific bodies of information relating to cell lineages, including cancer cell lineages, that would be impossible to obtain using more conventional technologies. But he also has a bigger goal in mind: Gaining acceptance for a new modality of measuring things over time, using DNA as a recording medium.
Thats been kind of a niche interest of technology development groups, Shendure said. Were trying to really move that toward the mainstream.
More here:
Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]
- Mendus redeems the outstanding convertible bonds from Negma ... - GlobeNewswire - April 8th, 2023 [April 8th, 2023]