Back in 2018, the lab of Christine Mayr, MD, PhD, at Memorial Sloan Kettering Cancer Center (MSK) introduced the world to a key cellular component that had been hiding in plain sight.
Now the lab is back with important results that build on that discovery. New findings published in Molecular Cell provide details about the hidden organization of the cytoplasm -; the soup of liquid, organelles, proteins, and other molecules inside a cell. The research shows it makes a big difference where in that cellular broth that messenger RNA (mRNA) get translated into proteins.
"You know the old real estate saying, 'location, location, location.' It turns out it applies to how proteins get made inside of cells, too," says Dr. Mayr, a molecular and cell biologist at the Sloan Kettering Institute, a hub for basic and translational research within MSK. "If it's translated over here, you get twice as much protein as if it's translated over there."
This first-of-its-kind study highlights the degree to which the cytoplasm is "beautifully organized," rather than being just a big jumble of stuff, she says.
Not only do the findings shed new light on fundamental cellular biology, but the knowledge also holds promise for increasing or altering the production of proteins in mRNA vaccines and therapies, the researchers note.
The study was led by former lab member Ellen Horste, PhD, whom Mayr tapped for the daunting but exciting project when she joined the lab several years ago. Dr. Horste received her doctorate from the Gerstner Sloan Kettering Graduate School in June and now works for a gene therapy company.
When we started, we had a hard time getting funding for this project. Everyone thought isolating the individual components would be totally impossible. This was really Ellen's project from her first day in the lab to her last day. It was quite challenging, and I couldn't be more proud of her."
Dr. Christine Mayr, MD, PhD, at Memorial Sloan Kettering Cancer Center
Adapting an approach commonly used by immunologists, the team was able to color-code individual particles within cells using antibodies and then sort them by color. They used RNA sequencing to identify which RNAs were associated with which particles.
"And it was really striking to see that in each of these intracellular neighborhoods, very different types of mRNAs were being translated," Dr. Mayr says.
Most of the well-known components inside a cell have a defined shape and come wrapped in an exterior membrane: the nucleus, mitochondria, lysosomes, the Golgi apparatus.
Two of the key components at the heart of the Mayr team's study don't have membranes -; which is what has made them so hard to find in the first place, and a challenge to isolate and study in the lab.
A quick biology review: Cells build proteins using instructions encoded in DNA. Those DNA sequences are transcribed into mRNA inside the cell nucleus. These messenger RNA then move out into the cytoplasm where they are translated into a useful protein.
The new study demonstrated that where in the cytoplasm this translation step happens isn't random, and that there's an underlying logic or "code" that directs mRNAs to specific neighborhoods within the cell.
"The whole cytoplasm is nicely compartmentalized," Dr. Mayr says. "We were able to demonstrate there is a code at work that's based on the mRNA's biophysical features -; their size and shape -; and the particular RNA-binding proteins they partner with. This code directs the mRNAs to different locations for translation."
Through a painstaking series of experiments, the research team was able to show that mRNAs of different lengths and shapes tend to gravitate to specific neighborhoods. And that if you intervene to redirect them to a different location, it can have a profound impact on the amount of protein that gets produced and on the protein's function.
The researchers looked at mRNAs that locate to the surface of the endoplasmic reticulum (an organelle involved in protein synthesis and other cellular functions). It's well established that proteins associated with cellular membranes and those that get secreted by the cell for use elsewhere are translated there. The research revealed that nearly 15% of mRNAs that encode non-membrane proteins are also translated at the ER -; and they encode large and highly expressed proteins.
Meanwhile, the mRNAs that get translated in the cytosol (the liquid part of the cytoplasm) tend to be very small proteins.
And mRNAs that locate to TIS granules tend to be transcription factors (proteins that regulate the transcription of genes). TIS granules are a membrane-less cellular component Mayr's lab discovered in 2018. They form a network of interconnected proteins and mRNAs, and are closely allied with the endoplasmic reticulum, forming a distinct space where mRNA and proteins can collect and interact.
A fluorescent microscopy image of a cell, with TIS granules shown in red and the endoplasmic reticulum is shown in green. The central black area is the cell's nucleus.
Cracking the code for how mRNA localize to different locations revealed some surprising findings.
After discovering the TIS granule network five years ago, the lab had turned its attention to understanding which of the many thousands of mRNAs in a cell localize there, and whether they have shared characteristics.
The team homed in on one part of the mRNA that doesn't usually get much attention -; the tail. It's separate from the middle part of the mRNA, which contains the instructions for building the protein. Scientists call the tail the three prime untranslated region (3 UTR), and it turns out to be critical for the localization process.
"The tail usually contains a longer sequence than the part of the RNA that's actually used to make the protein," Dr. Mayr says. "But for a long time, people didn't pay that much attention to the tail regions since you can still make the protein without them." (They're also important in other ways, as Dr. Mayr outlined in a 2019 review article.)
It turns out that the tail is essential for partnering with RNA-binding proteins so that, together, the mRNA goes to the correct translation region within the cell. (RNA-binding proteins are a type of protein that attaches to RNA molecules and can modulate various aspects of their activity.)
At first the team thought it was primarily these RNA-binding proteins that directed the action -; guiding the mRNAs to neighborhood one, neighborhood two, and so forth, Dr. Mayr says.
"But the really surprising finding was that the RNA-binding proteins actually play a secondary role rather than a primary role in the process," she says.
The default sorting of mRNA to a location, the researchers found, is based on the overall size and shape of the mRNAs. But being in partnership with a binding protein can override this default and redirect them.
"Our data show that if you translate an mRNA in the TIS granules, the resulting protein will perform one function, and if you translate it outside of the TIS granules, it will perform a different function," she says. "And this is how, in higher organisms like us, one protein can have more than one function."
One specific protein the team examined during the study is MYC. The MYC gene is one of the more famous oncogenes, and mutations in MYC underlie the development of many cancers.
"We observed that several MYC protein complexes were only formed when MYC mRNA was translated in the granules and not when it was translated in the cytosol," Dr. Mayr says. "Our results show there's an important biological relevance to these neighborhoods, even when only about 20% of mRNAs get translated in the TIS granules."
Together, these insights suggest that mRNA could be targeted to achieve different functions, as well as to vary the amount of a protein that gets produced, she adds.
"So, we hope that in the future we can make smarter medicines by making more or less of a particular factor, and also by manipulating its function," Dr. Mayr says. "This probably won't happen in the next five years, but it's something we are paving the way to do."
Source:
Journal reference:
Horste, E. L., et al. (2023) Subcytoplasmic location of translation controls protein output. Molecular Cell. doi.org/10.1016/j.molcel.2023.11.025.
Go here to read the rest:
Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]
- Mendus redeems the outstanding convertible bonds from Negma ... - GlobeNewswire - April 8th, 2023 [April 8th, 2023]