Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations – Nature.com

Holdo, R. M., Holt, R. D. & Fryxell, J. M. Opposing rainfall and plant nutritional gradients best explain the wildebeest migration in the Serengeti. Am. Nat. 173, 431445 (2009).

Article PubMed Google Scholar

Estes, R. D. The Gnus World: Serengeti Wildebeest Ecology and Life History. (University of California Press, 2014).

McNaughton, S. J. Serengeti migratory wildebeest: facilitation of energy flow by grazing. Science 191, 9294 (1976).

Article ADS CAS PubMed Google Scholar

McNaughton, S. J. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am. Nat. 113, 691703 (1979).

Article Google Scholar

Arctander, P., Johansen, C. & Coutellec-Vreto, M. A. Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol. Biol. Evol. 16, 17241739 (1999).

Article CAS PubMed Google Scholar

Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Sub-region (Cambridge University Press, 2013).

Kirkman, A. H. B. Conservation notes. Connochaetes gnou. J. Soc. Pres. Fauna Emp. 35, 50 (1938).

von Richter, W. Past and present distribution of the black wildebeest, Connochaetes gnou Zimmermann (Artiodactyla: Bovidae): with special reference to the history of some herds in South Africa. (Transvaal Museum, 1971).

Grobler, P., van Wyk, A. M., Dalton, D. L., van Vuuren, B. J. & Kotz, A. Assessing introgressive hybridization between blue wildebeest (Connochaetes taurinus) and black wildebeest (Connochaetes gnou) from South Africa. Conserv. Genet. 19, 981993 (2018).

Article Google Scholar

Helm, C. V. Ecological separation of the black and blue wildebeest on Ezemvelo Nature Reserve in the highveld grasslands of South Africa. (University of Pretoria, 2007).

Hassanin, A. et al. Pattern and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C. R. Biol. 335, 3250 (2012).

Article PubMed Google Scholar

Feder, J. L., Egan, S. P. & Nosil, P. The genomics of speciation-with-gene-flow. Trends Genet. 28, 342350 (2012).

Article CAS PubMed Google Scholar

Said, M. Y. et al. Effects of extreme land fragmentation on wildlife and livestock population abundance and distribution. J. Nat. Conserv. 34, 151164 (2016).

Article Google Scholar

Mukeka, J. M., Ogutu, J. O., Kanga, E. & Rskaft, E. Human-wildlife conflicts and their correlates in Narok County, Kenya. Glob. Ecol. Conserv. 18, e00620 (2019).

Google Scholar

Ogutu, J. O. Changing wildlife populations in Nairobi National Park and adjoining Athi-Kaputiei plains: collapse of the migratory wildebeest. Open Conserv. Biol. J. 7, 1126 (2013).

Article Google Scholar

Lvschal, M. et al. Fencing bodes a rapid collapse of the unique Greater Mara ecosystem. Sci. Rep. 7, 41450 (2017).

Article ADS PubMed PubMed Central Google Scholar

Perkins, J. S. Botswana: fencing out the equity issue. Cattleposts and cattle ranching in the Kalahari Desert. J. Arid Environ. 33, 503517 (1996).

Article ADS Google Scholar

Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 6377 (2008).

Article PubMed Google Scholar

Sinclair, A. R. E. Mammal population regulation, keystone processes and ecosystem dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 17291740 (2003).

Article CAS PubMed PubMed Central Google Scholar

Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant? Am. Nat. 13, 781798 (1988).

Semmens, D. J., Diffendorfer, J. E., Lpez-Hoffman, L. & Shapiro, C. D. Accounting for the ecosystem services of migratory species: Quantifying migration support and spatial subsidies. Ecol. Econ. 70, 22362242 (2011).

Article Google Scholar

Lpez-Hoffman, L. et al. Ecosystem services from transborder migratory species: implications for conservation governance. Annu. Rev. Environ. Resour. 42, 509539 (2017).

Article Google Scholar

Kauffman, M. J. et al. Mapping out a future for ungulate migrations. Science 372, 566569 (2021).

Article ADS CAS PubMed Google Scholar

Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsight, J. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 5576 (2009).

Article Google Scholar

Xu, Y. et al. Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecol. Appl. 29, e01960 (2019).

Article PubMed PubMed Central Google Scholar

Lohmann, K. J. Animal migration research takes wing. Curr. Biol. 28, 952955 (2018).

Article Google Scholar

Fudickar, A. M., Jahn, A. E. & Ketterson, E. D. Animal migration: an overview of one of natures great spectacles. Annu. Rev. Ecol. Evol. Syst. 52, 479497 (2021).

Article Google Scholar

Futuyma, D. & Kirkpatrick, M. Evolution (Sinauer, 2017).

Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 16551664 (2009).

Article CAS PubMed PubMed Central Google Scholar

Garcia-Erill, G. & Albrechtsen, A. Evaluation of model fit of inferred admixture proportions. Mol. Ecol. Resour. 20, 936949 (2020).

Article CAS PubMed Google Scholar

Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493496 (2011).

Article CAS PubMed PubMed Central Google Scholar

Boitard, S., Rodrguez, W., Jay, F., Mona, S. & Austerlitz, F. Inferring population size history from large samples of genome-wide molecular data - an approximate Bayesian computation approach. PLoS Genet. 12, e1005877 (2016).

Article PubMed PubMed Central Google Scholar

Quinn, L. et al. Colonialism in South Africa leaves a lasting legacy of reduced genetic diversity in Cape buffalo. Mol. Ecol. 32, 18601874 (2023).

Article PubMed Google Scholar

Wang, X. et al. Persistent gene flow suggests an absence of reproductive isolation in an African antelope speciation model. bioRxiv https://doi.org/10.1101/2022.12.08.519574 (2022).

Malinsky, M., Matschiner, M. & Svardal, H. Dsuite - Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584595 (2021).

Article PubMed Google Scholar

Patterson, N. et al. Ancient admixture in human history. Genetics 192, 10651093 (2012).

Article PubMed PubMed Central Google Scholar

Martin, S. H. & Amos, W. Signatures of introgression across the allele frequency spectrum. Mol. Biol. Evol. 38, 716726 (2021).

Article CAS PubMed Google Scholar

Liang, M. & Nielsen, R. The lengths of admixture tracts. Genetics 197, 953967 (2014).

Article PubMed PubMed Central Google Scholar

Excoffier, L. et al. fastsimcoal2: demographic inference under complex evolutionary scenarios. Bioinformatics 37, 48824885 (2021).

Article CAS PubMed PubMed Central Google Scholar

Vozdova, M. et al. A comparative study of meiotic recombination in cattle (Bos taurus) and three wildebeest species (Connochaetes gnou, C. taurinus taurinus and C. t. albojubatus). Cytogenet. Genome Res. 140, 3645 (2013).

Article CAS PubMed Google Scholar

Donnelly, M. P. et al. A global view of the OCA2-HERC2 region and pigmentation. Hum. Genet. 131, 683696 (2012).

Article CAS PubMed Google Scholar

Pieragostini, E., Alloggio, I. & Petazzi, F. Insights into hemoglobin polymorphism and related functional effects on hematological pattern in mediterranean cattle, goat and sheep. Diversity 2, 679700 (2010).

Article CAS Google Scholar

Petkova, D., Novembre, J. & Stephens, M. Visualizing spatial population structure with estimated effective migration surfaces. Nat. Genet. 48, 94100 (2016).

Article CAS PubMed Google Scholar

Estes, R. & East, R. Status of the wildebeest (Connochaetes taurinus) in the wild 1967-2005 (Wildlife Conservation Society, 2009).

Lorenzen, E. D., De Neergaard, R., Arctander, P. & Siegismund, H. R. Phylogeography, hybridization and Pleistocene refugia of the kob antelope (Kobus kob). Mol. Ecol. 16, 32413252 (2007).

Article CAS PubMed Google Scholar

Pedersen, C.-E. T. et al. A southern African origin and cryptic structure in the highly mobile plains zebra. Nat. Ecol. Evol. 2, 491498 (2018).

Article PubMed Google Scholar

Bertola, L. D. et al. Whole genome sequencing and the application of a SNP panel reveal primary evolutionary lineages and genomic variation in the lion (Panthera leo). BMC Genom. 23, 321 (2022).

Article CAS Google Scholar

Garcia-Erill, G. et al. Warthog genomes resolve an evolutionary conundrum and reveal introgression of disease resistance genes. Mol. Biol. Evol. 39, msac134 (2022).

Balboa, R. F. et al. African bushpigs exhibit porous species boundaries and appeared in Madagascar concurrently with human arrival. Nat. Commun. 15, 172 (2024).

Article ADS CAS PubMed PubMed Central Google Scholar

Ackermann, R. R., Brink, J. S., Vrahimis, S. & De Klerk, B. Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. S. Afr. J. Sci. 106, 15 (2010).

Article Google Scholar

Todesco, M. et al. Hybridization and extinction. Evol. Appl. 9, 892908 (2016).

Article CAS PubMed PubMed Central Google Scholar

Grobler, J. P. et al. Management of hybridization in an endemic species: decision making in the face of imperfect information in the case of the black wildebeestConnochaetes gnou. Eur. J. Wildl. Res. 57, 9971006 (2011).

Article Google Scholar

Grobler, J. P. et al. The genetic status of an isolated black wildebeest (Connochaetes gnou) population from the Abe Bailey Nature Reserve, South Africa: Microsatellite data on a putative past hybridization with blue wildebeest (C. taurinus). Mamm. Biol. 70, 3545 (2005).

Article Google Scholar

Currat, M., Ruedi, M., Petit, R. J. & Excoffier, L. The hidden side of invasions: massive introgression by local genes. Evolution 62, 19081920 (2008).

PubMed Google Scholar

Oswald, J. A. et al. Evolutionary dynamics of hybridization and introgression following the recent colonization of Glossy Ibis (Aves: Plegadis falcinellus) into the New World. Mol. Ecol. 28, 16751691 (2019).

Article PubMed Google Scholar

See the article here:
Introgression and disruption of migration routes have shaped the genetic integrity of wildebeest populations - Nature.com

Related Posts