Dissecting the Anatomy of Planetary Nebulae Using the Hubble Space Telescope – SciTechDaily

On the left is an image of the Jewel Bug Nebula (NGC 7027) captured by the Hubble Space Telescope in 2019 and released in 2020. Further analysis by researchers produced the RGB image on the right, which shows extinction due to dust, as inferred from the relative strength of two hydrogen emission lines, as red; emission from sulfur, relative to hydrogen, as green; and emission from iron as blue. Credit: STScI, Alyssa Pagan

Images of two iconic planetary nebulae taken by the Hubble Space Telescope are revealing new information about how they develop their dramatic features. Researchers from Rochester Institute of Technology and Green Bank Observatory presented new findings about the Butterfly Nebula (NGC 6302) and the Jewel Bug Nebula (NGC 7027) at the 237th meeting of the American Astronomical Society on Friday, January 15, 2021.

Hubbles Wide Field Camera 3 observed the nebulae in 2019 and early 2020 using its full, panchromatic capabilities, and the astronomers involved in the project have been using emission line images from near-ultraviolet to near-infrared light to learn more about their properties. The studies were first-of-their-kind panchromatic imaging surveys designed to understand the formation process and test models of binary-star-driven planetary nebula shaping.

Were dissecting them, saidJoel Kastner, a professor inRITs Chester F. Carlson Center for Imaging ScienceandSchool of Physics and Astronomy. Were able to see the effect of the dying central star in how its shedding and shredding its ejected material. Were now seeing where material that the central star has tossed away is being dominated by ionized gas, where its dominated by cooler dust, and even how the hot gas is being ionized, whether by the stars UV or by collisions caused by its present, fast winds.

On top is an image of the Butterfly Nebula (NGC 6302) captured by the Hubble Space Telescope in 2019 and released in 2020. Further analysis by researchers produced the RGB image on the bottom, which shows extinction due to dust, as inferred from the relative strength of two hydrogen emission lines, as red; emission from nitrogen, relative to hydrogen, as green; and emission from iron as blue. Credit: STScI, APOD/J. Schmidt; J. Kastner (RIT) et al.

Kastner said analysis of the new HST images of the Butterfly Nebula is confirming that the nebula was ejected only about 2,000 years agoan eyeblink by the standards of astronomy and established that the S-shaped iron emission that helps give it the wings of gas is even younger. Surprisingly, they found that while astronomers previously believed they had located the nebulas central star, that previously-identified star is actually not associated with the nebula and is instead much closer to Earth than the Butterfly Nebula. Kastner said he hopes that future studies with the James Webb Space Telescope could help locate the real dying star at the heart of the nebula.

The teams ongoing analysis of the Jewel Bug Nebula is built on a 25-year baseline of measurements dating back to early Hubble imaging. Paula Moraga Baez, an astrophysical sciences and technology Ph.D. student from DeKalb, Ill., called the nebula remarkable for its unusual juxtaposition of circularly symmetric, axisymmetric, and point-symmetric (bipolar) structures. Moraga noted, The nebula also retains large masses of molecular gas and dust despite harboring a hot central star and displaying high excitation states.

The RGB image on the right reveals the spatial separation of molecules CO+ (red) and HCO+ (blue), indicative of UV and X-ray processes, respectively. The much deeper optical image of [O III] (green) provides a juxtaposition of the ionized atomic structure and that of radio molecular observations. Credit: STScI, Alyssa Pagan; J. Bublitz (NRAO/GBO) et al.

Were very excited about these findings, said Bublitz. We had hoped to find structure that clearly showed CO+ and HCO+ spatially coincident or entirely in distinctive regions, which we did. This is the first map of NGC 7027, or any planetary nebula, in the molecule CO+, and only the second CO+ map of any astronomical source.

Meeting: 237th meeting of the American Astronomical Society

In addition to Kastner, Moraga, and Bublitz, the research team involved in the HST imaging work includes Rodolfo Montez Jr. 10 Ph.D. (astrophysical sciences and technology) from Harvard-Smithsonian CfA; Bruce Balick from University of Washington; as well as Adam Frank and Eric Blackman from University of Rochester. Bublitzs international team of collaborators on radio molecular line imaging of NGC 7027 includes Kastner, Montez Jr., and astrophysicists from Spain, France, and Brazil.

Continue reading here:
Dissecting the Anatomy of Planetary Nebulae Using the Hubble Space Telescope - SciTechDaily

Related Posts