All posts by student

Human Behavior Lab Revealing the Emotional Brain

From marketing and education to nutrition and economics, biometric research applies to a wide range of disciplines. This technology can unveil the emotional responses that drive decisions, leading to more effective media, better teaching methods and more compelling outreach programs.

If you're a Texas A&M faculty member or graduate student, contact the team to see how you can get involved with the lab.

Originally posted here:
Human Behavior Lab Revealing the Emotional Brain

Human Physiology syllabus – People Search

Human Physiology syllabus

Instructor: GaryRitchisonOffice: SCIBD 4221 Office phone: 622-1541E-mail: gary.ritchison@eku.edu

Textbook: Human Physiology, 9th, 10th, 11th, 12th, 13th, 14th, or 15th edition by Stuart Ira Fox

Lecture notes:

LectureNotes 2 - Neurons & the Nervous System I

LectureNotes 2b - Neurons & the Nervous System II

LectureNotes 3 - Muscle

LectureNotes 4 - Blood & Body Defenses I

LectureNotes 4b - Blood & Body Defenses II

LectureNotes 5 - Cardiovascular System

LectureNotes 6 - Respiratory System

Exam 2 scores + mid-term grades

Course requirements:

1. There will be four 100 point exams during the semester plus acomprehensivetest. The comprehensive test will be optional for most students, but mustbetaken by those who miss one of the first three exams. There will also be eight 10-point quizzes (five 2-point multiple questions each) during the semester. Quiz dates will not be announced beforehand. Quizzes will be over material covered in lecture since the previous exam. If a quiz is missed, you will be allowed to take a make-up quiz only if you can provide a legitimate reason for missing class, e.g., approved university function (documentation from coaches or other university personnel needed), death in the family, or illness (documentation required from EKU Health Services or from your doctor or physician's assistant).

2. If one of the first three exams is missed, you will take the comprehensive test as the make-up test. If you take the first three exams, the comprehensive test is optional. If you take the first three exams plus the optional test, I will drop the lowest of these four scores. In other words, if you take the optional test, you can substitute your score on the optional test for your lowest score on the first three exams. The optional test score cannot be used as a substitute for Exam 4. Everyone must take Exam 4.

3. Quizzes will include questions based on material covered in lecture. Exams will include questions based on material covered in lectureand in the text. Most readings in the text will be over material alsocoveredin lecture. However, for each exam, you will be responsible for thematerialin one chapter of the text; material that will not be covered inlecture.Those chapters are as follows: Exam 1 = Chapter 11 (EndocrineGlands: Secretion and Action of Hormones), Exam 2 = Chapter 17 (Physiology of the Kidneys), Exam 3 = Chapter 18 (The DigestiveSystem), and Exam 4 = Chapter 20 (Reproduction).

4. Exams and quizzes will consist of multiple choice questions.

5. Review questions are available for each exam: Exam1, Exam 2,Exam3, Exam 4,& the ComprehensiveExam. Questions are based on material covered both in lecture and thetext. All exam and quiz questions will be based on these review questions.

Test Information: For each exam, I'll provide you with atestbooklet and a Scantron sheet. You'll need to provide a pencil. On examdays, please be on time! Exams will be handed out at the beginning of class. Students who arrive after others have alreadycompletedthe exam will not be allowed to take the test & will take thecomprehensiveexam as the make-up test. At the next class meeting after an exam(unlessotherwise noted), exams will be handed back.

Grading: Grades will be assigned on the basis of 480 possiblepoints (Exams = 400 points and quizzes = 80 points). Final grades will be assigned as follows:

Mid-term grade: Your grade at mid-term will be provided withyour score on Exam 2.

Disability Accommodation Statement: A student with a "disability" may be an individual with a physical or mental impairment that substantially limits one or more major life activities such as learning, seeing or hearing. Additionally, pregnancy accompanied by medical conditions that causes a similar substantial limitation may also be considered under the ADA. If you are registered with the Office of Services for Individuals with Disabilities, please obtain your accommodation letters from the OSID and present them to the course instructor to discuss any academic accommodations you need. If you believe you need accommodation and are not registered with the OSID, please contact the office in the Whitlock Building Room 361, by email at disserv@eku.edu or by telephone at (859) 622-2933. Upon individual request, this syllabus can be made available in an alternative format.

Academic Integrity: Students are advised that EKU's Academic Integrity Policy will strictly be enforced in this course. The Academic Integrity policy is available athttp://www.academicintegrity.eku.edu.This statement is applicable to all EKU students in all courses. Questions regarding the policy may be directed to the Office of Academic Integrity.

Attendance policy: Attendance is required only on exam days.

Tentative Schedule:

December 13 (10:30 - 12:30)

Back to GaryRitchison's Homepage

Go here to see the original:
Human Physiology syllabus - People Search

Department of Pathology & Immunology | Washington …

Since its inception in 1910, the Department of Pathology & Immunology has had combined excellence in research, training, and clinical service. Our conviction that basic science research leads to exceptional training and high-quality clinical service has made our department a vital bridge between the basic sciences and other clinical disciplines at Washington University. We are a vital and ever-evolving group of scholars dedicated to human pathobiology and the care of those afflicted with disease.

Read more here:
Department of Pathology & Immunology | Washington ...

MBI – MBI | Montana State University

The Department of Microbiology and Immunology is pleasedrecognize graduate student, EricDunham of theBoyd Lab, whohas recently been selected for the highly competitiveNational Science FoundationGraduate Research Fellowship. Eric, who studiesthe role of hydrogen in supporting subglacial microbial communities, has traveled to Icelandto collected sediments from beneath four glaciers. The NSF fellowship will allow him to conduct a second round of experiments on the microorganisms that live without oxygen and are isolated from sunlight in those sediments.

Eric, who is entering his third year as a Ph.D. candidate under the mentorship of Dr. Eric Boyd, is a Montana native who grew up in Billings andgraduated in 2013 from the University of Montana with a double major in cell and molecular biology and biochemistry. Before coming to MSU Eric worked for two yearson a post-baccalaureate research fellowship with the NIH at the Rocky Mountain Laboratories in Hamilton, MTstudying the Ebola virus.

Read more about Eric's research here.

Continue reading here:
MBI - MBI | Montana State University

Sexual differentiation | embryology | Britannica.com

Sexual differentiation, in human embryology, the process by which the male and female sexual organs develop from neutral embryonic structures. The normal human fetus of either sex has the potential to develop either male or female organs, depending on genetic and hormonal influences.

Read More on This Topic

sex: Differentiation of the sexes

Differentiation between the sexes exists, therefore, as the primary difference represented by the distinction between eggs and sperm, by differences represented by nature of the reproductive glands and their associated structures, and lastly by differences, if any, between individuals possessing the male and female reproductive

In humans, each egg contains 23 chromosomes, of which 22 are autosomes and 1 is a female sex chromosome (the X chromosome). Each sperm also contains 23 chromosomes: 22 autosomes and either one female sex chromosome or one male sex chromosome (the Y chromosome). An egg that has been fertilized has a full complement of 46 chromosomes, of which two are sex chromosomes. Therefore, genetic sex of the individual is determined at the time of fertilization; fertilized eggs containing an XY sex chromosome complement are genetic males, whereas those containing an XX sex chromosome complement are genetic females.

Every fetus contains structures that are capable of developing into either male or female genitalia, and, regardless of the complement of sex chromosomes, all developing embryos become feminized unless masculinizing influences come into play at key times during gestation. In males, several testis-determining genes on the Y chromosome direct the sexually undifferentiated (indeterminate) embryonic gonads to develop as testes. The X chromosome also participates in the differentiating process, because two X chromosomes are necessary for the development of normal ovaries.

Two precursor organs exist in the fetus: the Wolffian duct, which differentiates into the structures of the male genital tract, and the Mllerian duct, the source of the female reproductive organs. During the third month of fetal development, the Sertoli cells of the testes of XY fetuses begin to secrete a substance called Mllerian inhibiting hormone. This causes the Mllerian ducts to atrophy instead of develop into the oviducts (fallopian tubes) and uterus. In addition, the Wolffian ducts are stimulated by testosterone to eventually develop into the spermatic ducts (ductus deferens), ejaculatory ducts, and seminal vesicles. If the fetal gonads do not secrete testosterone at the proper time, the genitalia develop in the female direction regardless of whether testes or ovaries are present. In normal female fetuses, no androgenic effects occur; the ovaries develop along with the Mllerian ducts, while the Wolffian duct system deteriorates. Sexual differentiation is completed at puberty, at which time the reproductive system in both women and men is mature.

In such a complex system there are many opportunities for aberrant development. The causes of disorders of sexual differentiation, while not fully understood, have been greatly elucidated by advances in chromosomal analysis, the identification of isolated genetic defects in steroid hormone synthesis, and the understanding of abnormalities in steroid hormone receptors.

For more information about the embryological and anatomical aspects of the gonads and genitalia, see human reproductive system. For descriptions of chromosomes and the genes that they carry, see human genetics.

Read the original here:
Sexual differentiation | embryology | Britannica.com

Biochemistry | Article about biochemistry by The Free …

biological chemistry, the science dealing with the composition of organisms; the structure, properties, and localization of compounds observed in organisms; the pathways and laws governing the formation of these compounds; and the sequence and mechanisms of transformations and their biological and physiological roles. Biochemistry is subdivided into the biochemistry of microorganisms, of plants, of animals, and of man. This subdivision is arbitrary, since there is much in common in the composition of the various objects of study and in the biochemical processes taking place in them. For this reason, the research carried out on microorganisms complements and enriches research on plant or animal tissues and cells. Although the different branches of biochemical research are intimately connected, it is accepted practice to divide biochemistry into static biochemistry, concerned predominantly with the analysis of the composition of organisms; dynamic biochemistry, concerned with the transformation of substances; and functional biochemistry, which elucidates the chemical processes that underlie various manifestations of the life functions. The last branch of research is sometimes referred to by the special name physiological chemistry.

The totality of chemical reactions taking place in an organism, from the acquisition of materials which enter the organism from without (assimilation) and their breakdown (dissimilation) to the formation of the end products that are secreted, constitutes the essence and content of metabolismthe main and constant criterion of all living things. Understandably, the study of metabolism in all its details is one of the major tasks of biochemistry. Biochemical research embraces a very wide range of questions: there is no branch of theoretical or applied biology, chemistry, or medicine which is not linked with it. Thus, contemporary biochemistry unites many related scientific disciplines that became independent in the middle of the 20th century.

The accumulation of biochemical information and establishment of biochemistry in the 16th to 19th centuries. Biochemistry took shape as an independent science at the end of the 19th century; however, its origins reach far back into the past. From the first half of the 16th century until the second half of the 17th century, iatrochemists (chemistphysicians) made their contribution to the development of chemistry and medicine: the German physician and natural scientist P. Paracelsus, the Dutch scholars J. B. van Heimont and F. Sylvius, and others studied the digestive juices, bile, and the processes of fermentation. Sylvius, a famous physician, attributed particularly great importance to the correct balance of acids and alkalies in the human organism; he believed that many if not all diseases were caused by a disturbance of this balance. Many of the positions espoused by the iatrochemists were naive and entirely mistaken; however, it must not be forgotten that chemistry did not yet exist at that time. The most generally accepted theory governing science at that time was the so-called phlogiston theory. Nevertheless, equilibrium experiments were carried out on man with exact records of body mass and secretion by the Italian scientist S. Santorio at the beginning of the 17th century. These experiments led to the description of perspiratio insensibilisthe loss of mass owing to insensible perspiration.

The great discoveries in the areas of physics and chemistry in the 18th and beginning of the 19th centuries (the discovery of many simple substances and compounds, the formulation of the gas laws, the discovery of the laws of conservation of matter and energy) laid the scientific foundation of general chemistry. After the discovery of oxygen as a component of air, the Dutch botanist J. Ingenhousz was able to describe the continual formation of CO2 by plants and the release of oxygen by the green parts of the plant stimulated by sunlight. Ingenhousz experiments marked the beginning of the study of plant respiration and the processes of photosynthesis, which are still being explored in detail.

At the end of the first quarter of the 19th century, only a very small number of organic substances were known. In the textbook of the German chemist L. Gmelin published in 1822, only 80 organic compounds are named. At that time the tasks and possibilities of organic chemistry were still unclear. The Swedish scientist J. Berzelius thought that organic bodies were divided into two clearly differentiated classesplants and animals; he also thought that the essence of living matter derived from something other than its inorganic elements. This something else, which he called life force, lies entirely beyond the realm of inorganic elements. Berzelius expressed doubt that man will ever be able to produce organic substances artificially and confirm such analysis by synthesis (1827). The untenability of these views, which were typical of vitalism, was demonstrated very shortly. As early as 1828, the German chemist F. Whler, a student of Berzelius, produced urea by synthetic means. Urea had been described in the 18th century by the French scientist H. Rouelle as one of the component parts of urine in mammals. Soon there followed the synthesis of other natural organic compounds and of artificial compounds unknown in nature. Thus, the wall separating organic from inorganic compounds was broken down.

Beginning with the second half of the 19th century, organic chemistry increasingly became synthetic chemistry, within which efforts were directed at the preparation of new carbon compounds, especially those having industrial use. The study of the composition of plant and animal specimens was not yet included. Knowledge in this area was obtained by chance as a by-product of work by chemists, botanists, plant and animal physiologists, pathologists, and physicians whose interests included chemical research. Thus, in 1814, the Russian chemist K. S. Kirkhgof described the conversion of starch into sugar under the effect of extract of sprouted barley seedsthe action of amylase. By the middle of the 19th century, other enzymes were described: salivary amylase, which breaks down polysaccharides; and pepsin in gastric juice and trypsin in the pancreatic fluid, which break down protein. Berzelius introduced the concept of catalysts into chemistry and included all enzymes known at that time in this category. In 1835 the French chemist M. Chevreul described creatine in muscle tissue; shortly thereafter, the structurally related creatinine was discovered in urine. The German chemist J. von Liebig established the presence of lactic acid in the skeletal muscles and the accumulation of this substance during work. In 1839 he established that food was composed of protein, fats, and carbohydrates, which are the main components of animal and plant organisms. In the mid-19th century the structure of fat was established and its synthesis was carried out by the French chemist P. Berthelot; the synthesis of carbohydrates was accomplished by the Russian scientist A. M. Butlerov, who also proposed a theory of the structure of organic compounds that retains its importance even today. The systematic study of proteins was begun by the Dutch physician and chemist G. J. Mulder in the 1830s and has continued intensively ever since. At the same time, in connection with the description of yeast cells (C. Cagniard de La Tour in France and T. Schwann in Germany, 183638), scientists began actively studying the process of the metabolism of sugar and formation of alcohol, which had long since attracted attention. Among those who studied fermentation were J. von Liebig and the French scientist L. Pasteur. Pasteur came to the conclusion that fermentation was a biological process that required the participation of living yeast cells. Liebig, on the other hand, regarded the metabolism of sugar as a complicated chemical reaction. This dispute was resolved when the Russian chemist M. M. Manassein (1871) and, with even more clarity, the German scientist E. Buchner (1897), proved the ability of the fluid extracted from yeast cells to induce alcoholic fermentation. Thus, the correctness of the chemical theory of enzyme action formulated by Liebig in 1870 was confirmed; the basic principles of this theory have retained their importance to this day.

A significant quantity of information accumulated regarding the chemical composition of plant and animal organisms and the chemical reactions taking place in them; at the same time, attempts were made to systematize and organize this information in treatises. The earliest of these were the textbooks of J. Simon (1842) and of Liebig (1847), published in Germany; and the textbook of physiological chemistry by A. I. Khodnev, issued in Russia (1847).

The origin and development of contemporary trends in biochemistry. At the end of the 19th century and during the 20th century, the development of biochemistry took on a markedly specialized character which reflects the problems and the objects of study. Plant biochemistry developed predominantly in subdepartments of botany and of plant physiology. The biochemistry of microorganisms is also closely related to plant biochemistry. Biochemists of all countries have studied proteins, carbohydrates, lipids, and vitamins (the component parts of plants, animals, and microorganisms) in the most varied specimens.Glycosides, tanning agents, essential oils, alkaloids, antibiotics, and other so-called secondary products can be regarded as characteristic of plants and microorganisms. Among the above mentioned compounds, many glycosides were synthesized by enzymes by the French chemist E. Bourquelot and his coworkers (191118). The classic work of the German chemist R. Willstatter (191015) played an exceptional role in deciphering the structure of the anthocyaninsthe glycosides that make up the pigments of flowers and fruits. The German chemist A. Hofmann (18901900) studied the group of alkaloids (nitrogenous heterocyclic substances of fundamental character). Later, other outstanding researchers studied the alkaloids (R. Willsttter, the Russian chemists A. P. Orekhov and A. A. Shmuk, and many others). Leading chemists and biochemistsPerkin, Jr. (Great Britain), H. Euler (Sweden), and othersalso successfully studied the essential oils and the terpenes.

An outstanding role in the development of plant biochemistry in Russia (at the end of the 19th century and during the first half of the 20th century) was played by Professor A. S. Famintsyn of the University of St. Petersburg and his students D. I. Ivanovskii (who discovered viruses) and I. P. Borodin (who studied the oxidation processes in plant organisms and their relation to protein transformation).

The work of S. P. Kostychev (professor at the University of St. Petersburglater, Leningrad State University) on anaerobic carbohydrate metabolism and plant respiration enriched chemical physiology by the discovery of new intermediates in fermentation and by the formulation of original views on the nature of oxidation processes, protein metabolism, and nitrogen fixation by plants. M. S. Tsvet, professor at the University of Warsaw, made a significant contribution with his column chromatography method, which is still used today. The Moscow school of physiologists and plant biochemists was represented by K. A. Timiriazev, who studied photosynthesis and the chemistry of chlorophyll. His studentsV. I. Palladin, who worked on biological oxidation; D. P. Prianishnikov, who studied nitrogen metabolism in plants; V. S. Butkevich, who enriched theoretical biochemistry with his research on protein and protein metabolism in plants; and A. R. Kizel, who studied arginine and urea metabolism in plants and structural elements in cell protoplasmwere the founders of the great schools and original directions in contemporary general and evolutionary biochemistry, and also of physiology and plant biochemistry, which developed fruitfully in the last 25 years of the 20th century. In the 20th century, researchers in the biochemistry of microorganisms and plants solved many common problems involving natural compounds (including macromolecules), their structures and paths of formation and breakdown, and the properties of enzymes participating in these processes. It should be noted that microorganisms gradually became the favorite specimens for various enzymological studies and for the solution of problems in biochemical genetics.

All this research created a firm foundation for the solution of many specific problems, including industrial problems. Among the latter were the production of new antibiotics, the development of methods for purifying them, and the search for conditions favorable to the microbiological synthesis not only of antibiotics but also of other biologically active compoundsvitamins, critical amino acids, nucleotides, and so on.

TECHNICAL AND INDUSTRIAL BIOCHEMISTRY. the requirements of the national economyproblems of profitable production of raw materials and their practical and rational storage, correct processing, and effective use; problems of raising the yield of cultivated plants; questions of viticulture and the technology of wine-making; and the requirements of the food industryhave led to the creation of a new branch of biochemistry: technical and industrial biochemistry. In the USSR, this area is represented most strongly by the A. N. Bakh Institute of Biochemistry (A. I. Oparin, V. L. Kretovich, L. V. Metlitskii, R. M. Feniksova, and others) and the Institute of Plant Physiology of the Academy of Sciences of the USSR (A. L. Kursanov and his coworkers and students). I. P. Ivanov (All-Union Institute of Plant-Growing), V. L. Kretovich, M. I. Kniaginichev, their coworkers, and many others have greatly contributed to the study of the biochemistry of grain crops. The work carried out at the A. N. Bakh Institute on the Biochemistry of Catechins has played an important role in the development of production of tea and tanning agents.

ANIMAL AND HUMAN BIOCHEMISTRY (MEDICAL AND PHYSIOLOGICAL CHEMISTRY). The development of animal and human biochemistry has been greatly furthered by the numerous groups of physiologists, chemists, pathologists, and medical doctors working in different countries. In France, in the laboratory of the physiologist C. Bernard, glycogen was discovered in the liver of mammals (1857) and the pathways of its formation and the mechanisms regulating its breakdown were studied; also in France, L. Corvisart (1856) discovered the enzyme trypsin in pancreatic juice. In Germany, F. Hoppe-Seyler, A. Kossel, E. Fischer, E. Ab-derhalden, O. Hammarsten, and others made detailed studies of simple and complex proteins, their structure and properties, and the substances formed by artificial degradation upon heating with acids and bases or by the action of enzymes. In England, F. Hopkins, the founder of the Cambridge school of biochemists, investigated the amino acid composition of proteins, discovered tryptophan and glutathione, and studied the role of amino acids and vitamins in nutrition.

Russian scientists working in the departments of higher academic institutions and in specialized institutes made an important contribution to the development of biochemistry at the turn of the 20th century. In the Military Medical Academy, A. la. Danilevskii and his coworkers studied problems of protein chemistry, methods for isolating and purifying enzymes, mechanisms of enzyme action, and the conditions for reversibility of enzyme reactions. At the Institute for Experimental Medicine, M. V. Nentskii carried out research on the chemistry of porphyrins and the biosynthesis of urea, and also on bacterial enzymes which are responsible for the breakdown of amino acids. The collaboration of the laboratories of A. la. Danilevskii and M. V. Nentskii with the laboratory of I. P. Pavlov in research on digestion and the formation of urea in the liver was especially fruitful. At Moscow University, V. S. Gulevich conducted detailed and successful research into extractive (nonprotein) substances present in muscle and discovered many new nitrogencontaining compounds of unique structure (carnosine, carnitine, and others). The detailed study of the various enzyme reactions which take place in the parenchymatous organsmainly in the liverand which govern the normal course of transport processes has been and remains the object of much research. In the second half of the 19th century and during the 20th century, much attention has been devoted to the biochemical study of excitable tissue, predominantly of the brain and muscle. In the USSR, A. V. Palladin, G. E. Vladimirov, E. M. Kreps, and their students and coworkers have worked on these problems. By the middle of the 20th century, neurochemistry had become one of the independent branches of biochemistry. The biochemistry of the blood was studied comprehensively. The respiratory function of the blood (that is, the binding and release of carbon dioxide and oxygen by the blood) was studied in the laboratory of C. Ludwig in Vienna in the mid-19th century and later in greater detail in various countries. The data obtained led to the analysis of the structure and properties of hemoglobin in its normal and pathological states, the detailed study of the reaction between hemoglobin and oxygen, and the elucidation of the laws governing the acidbase balance.

Biochemistry achieved great success in the study of vitamins, hormones, and mineral substances, and especially of trace elements, their distribution in various organisms, their physiological roles, the mechanisms of their action, and their regulating influence on enzyme reactions and transport processes. Of great importance is the question of the relation between structure and function, which characterizes the problems of biochemical pharmacology in dealing with medicinal preparations; and the study of the primary mechanism of their action, which involves intervention in the enzyme reactions that form the basis of the metabolic processes. In the mid-20th century, biochemical research carried out in clinics and devoted to the study of the biochemical features of the organism and the chemical makeup of blood, urine, and other fluids and tissues of the patient acquired an independent status. This area, which received extensive development, is the basis of clinical biochemistry.

VITAMINOLOGY. In 1880, in G. A. Bunges laboratory, a young Russian physician named N. I. Lunin first described the supplementary nutrient factors found in milk. Similar observations were made by the Dutch physician C. Eijkman, who in 1896 described the presence of a vital factor in rice bran. In 1912, the Polish researcher C. Funk isolated the active component in crystalline form and called it a vitamin. Work in this area was greatly expanded, and gradually many other vitamins were discovered. Today, vitaminology is one of the most important branches of biochemistry and of nutrition.

BIOCHEMISTRY OF HORMONES. Research on the analysis of the chemical structure of the products of glands of internal secretion (hormones), the pathways of their formation in the organism, their modes of action, and the possibility of synthesizing them in the laboratory constitutes one of the most important areas of biochemical research. The biochemistry of steroid hormones is part of the general problem of the biochemistry of sterines. The successes achieved in this area are largely a result of the use of initial and intermediate compounds labeled with carbon (14C). A close relationship has been established between a wide range of research on protein substances and the specialized study of the structure and function of hormones of proteinlike character. The study of the hormone activity of a given preparation is impossible without a thorough analysis of the biochemical mechanisms governing its activity. Thus, data concerning the chemistry and biochemistry of hormones contribute equally to our knowledge of endocrinology and of biochemistry.

ENZYMOLOGY. The study of enzymes is an entirely independent area of biochemistry. In this field, the problem of the structure of enzymatic proteins is closely interwoven with physicochemical problems of chemical kinetics and catalysis. In the second half of the 20th century, much new information has been added to our conception of enzyme structure and of their presence in the natural state in the form of complexes. The analysis of enzyme structure in conjunction with the activity exhibited by enzymes under various conditions has led to the understanding of the role of individual amino acids (mainly cysteine, lysine, histidine, tyrosine, and serine) in the formation of the active sites of enzymes. The structure of many coenzymes has been determined along with their significance for enzyme activity and also the relation between coenzymes and vitamins. R. Willsttter, L. Michaelis, G. Embden, and O. Meyerhof (Germany), J. Sumner and J. Northrop (Usa), H. Euler (Sweden), and A. N. Bakh (USSR) all made important contributions to the development of enzymology during the first half of the 20th century. Those who actively continued their research, set up schools, and opened up new areas include O. Warburg (West Berlin) and F. Lynen (Federal Republic of Germany), R. Peters and H. Krebs (Great Britain), H. Theorell (Sweden), F. Lipmann and D. Koshland (USA), F. Sorm (Czechoslovakia), F. Straub (Hungary), and T. Baranowski and J. Heller (Poland). In the USSR, the field of research is represented by V. A. Engelgardt and M. N. Liubimova, who established the enzyme activity of muscle protein and, in particular, the adenosine triphosphate activity of myosin and the process of oxidative phosphorylation; A. E. Braunshtein, who, in collaboration with M. G. Kritsman, discovered the process of the transfer of an amino group; A. I. Oparin and A. L. Kursanov, who studied the role of cell structure in the manifestation of enzyme activity; and S. R. Mardashev, who successfully studied the decarboxylation of amino acids. Research on large complexes of enzymes is being conducted in the laboratories of L. Reed (USA), M. Koike (Japan), D. Sanadi (USA), F. Lynen (West Germany), S. E. Severin (USSR), and others. The Soviet scientist V. A. Belitser greatly furthered our understanding of the efficiency of the role played by respirationdiscovered by V. A. Engelgardtin the formation of energyrich compounds; G. E. Vladimirov specified the quantity of energy (10 calories, or 42 joules) liberated by the hydrolysis of ATP. Studies in this area were isolated at first, but in the 1950s and later, work was greatly expanded, largely owing to research by D. Green, B. Chance, A. Lehninger, and E. Racker (USA), and E. Slater (Netherlands). In the USSR, this problem has been studied in the biochemistry sub-departments at Moscow State University and Leningrad State University, and also in independent laboratories (S. A. Neifakh, V. P. Skulachev, and others). In addition, contemporary research has demonstrated the marked influence of the salt content of the surroundings and of individual ions on enzymatic processes and the important role of trace elements in the realization of enzyme activity.

EVOLUTIONARY AND COMPARATIVE BIOCHEMISTRY. Studies of the chemistry of animals, plants, and microorganisms have shown that, in spite of the universality of basic biochemical structures and processes in all living organisms, there are specific differences determined by the level of ontogenetic and phylogenetic development of the specimen under examination. The accumulation of facts has provided the foundation for comparative biochemistry, whose object is to find the laws governing the biochemical evolution of organisms. In this connection, the problem of the origin of life on earth has great theoretical importance. Several important hypotheses of A. I. Oparins theory on the origin of life have received experimental confirmation in work done at the Bakh Institute, in the Subdepartment of Plant Biochemistry at Moscow State University, and in many foreign laboratories (for example, J. Oro and S. W. Fox in the USA).

HISTOCHEMISTRY AND CYTOCHEMISTRY. With the development of the techniques of morphological research, and especially with the introduction of the electron microscopewhich revealed many formerly unknown structures in the cell nucleus and protoplasminto laboratory work, new tasks presented themselves to biochemistry. On the borderline between morphological and biochemical research new areas of study have grown up. These include histochemistry and cytochemistry, which study the localization and transformation of substances in cells and tissues using biochemical and morphological methods.

BIOORGANIC CHEMISTRY. the detailed investigation of the structure of biopolymerssimple and complex proteins, nucleic acids, polysaccharides, and lipidsand the analysis of the effects of biologically active small molecular natural compounds (coenzymes, nucleotides, vitamins, and so on) led to the necessity of studying the relationship between the structure of a substance and its biological function. The formulation of this problem brought about a proliferation of research carried out on the border between biological and organic chemistry. This research area received the name of bioorganic chemistry.

MOLECULAR BIOLOGY. the development of methods for separating subcellular structures (ultracentrifugation) and for obtaining separate fractions containing the cell nuclei, mitochondria, ribosomes, and so on made possible the detailed study of the composition and biological functions of the separated components. The application of the methods of electrophoresis in conjunction with chromatography made possible the detailed characterization of macro-molecular compounds. The parallel development of analytic determination permitted the analysis of very small quantitites of mate-erial. This advance was linked to the introduction of physical (mainly optical) methods of analysis into biology and biochemistry (fluorometry, spectrophotometry in various regions of the spectrum, mass spectrometry, nuclear magnetic resonance, electron paramagnetic resonance, and gas and liquid chromatography), with the use of radioactive isotopes; sensitive automatic analyzers of amino acids, peptides, and nucleotides; polarimetry; macromolecular electrophoresis; and other methods. These developments led to the appearance of yet another independent branch of biochemistry, closely related to biophysics and physical chemistry, called molecular biology.

MOLECULAR GENETICS. Molecular genetics, in spite of some of its specific objectives, can be considered a part of molecular biology. Thus, for example, the analysis of the mechanism governing the occurrence of many hereditary malfunctions in the metabolism and actions of an organism has made possible the clarification of the role of the cessation or modification of the biosynthesis of those protein substances which have enzymic, immunological, or other biological activity. In this connection, the study of disruptions in the metabolism of carbohydrates and amino acids (for example, phenylalanine, tyrosine, and tryptophan) and the formation of pathological forms of hemoglobin and other biological compounds are relevant.

The development of new research methods between 1950 and 1970 has produced great advances in biochemistry. Foremost is the elucidation of protein structure and the determination of the sequential arrangement of amino acids within proteins. The first sequential arrangement of amino acids in the proteinlike hormone insulin was worked out by the English biochemist F. Sanger; later, the structure of the enzyme ribonuclease was determined by C. Hirs, S. Moore, and W. Stein (USA), who devised the method of automatic analysis of amino acids which became standard in biochemical laboratories. The same enzyme, ribonuclease, obtained from various sources was studied by C. Anfinsen (USA), F. Egami (Japan), and others. F. Sorm, B. Keil, and their coworkers (Czechoslovakia), B. Hartley (Great Britain), and others established the sequential arrangement of amino acids in many proteolytic enzymes. A major achievement of the 1960s was the chemical synthesis of hormonesthe adrenocorticotropic hormone, a molecule containing 23 amino acids (the natural hormone has 39 amino acids), and insulin, a molecule made up of 51 amino acidsand of the enzyme ribonuclease (124 amino acids).

In the USSR, work on problems of structure and synthesis of biologically active substances is being pursued at the Institute for the Chemistry of Natural Compounds (director, M. M. Shemiakin), at the Institute of Biological and Medical Chemistry (director, V. N. Orekhovich), and at other institutes and university departments.

The English scientists M. Perutz and J. Kendrew and their coworkers used X-ray analysis with great success in the determination of the structure of myoglobin and hemoglobin. In 1956 and 1957 the entire structure of lysozyme was worked out by the English biochemist D. Phillips and others. Equally important successes were achieved in the analysis of complex proteins, nucleoproteins, nucleic acids, and nucleotides. The triumphal accomplishment of biochemistry, molecular biology, and genetics was the research which established the role of nucleic acids in the biosynthesis of proteins and the predetermining influence of nucleic acids on the structure and properties of proteins synthesized within cells. This work elucidated the biochemical basis of the transmission of traits by inheritance from one generation to another. It is also difficult to overestimate the importance of the research which determined the sequence of nucleotides in transfer RNA (ribonucleic acid) and the elaboration of methods for the organic synthesis of polynucleotides. The work of the following investigators has been especially fruitful in the aforementioned areas: J. Buchanan, E. Chargaff, J. Davidson, D. Davis, A. Kornberg, S. Ochoa, J. Watson, and M. Wilkins (USA); F. Crick and F. Sanger (Great Britain); F. Jacob and J. Monod (France); and A. N. Belozerskii, A. S. Spirin, V. A. Engelgardt, and A. A. Baev (USSR).

Scientific institutions, societies, and periodicals.. The questions addressed to biochemistry by related scientific disciplinesmedicine and all its branches, agriculture (plant-growing and livestockraising), the food industry, theoretical and applied biology, soil science, hydrobiology, and oceanologyare continually increasing in scope. Each special field of biochemistry, in the USSR and abroad, utilizes a network of specialized institutes and laboratories. In the USSR, scientific work in biochemistry is conducted in central scientific research institutes within the various systems: in the Academy of Sciences of the USSRthe A. N. Bakh Institute of Biochemistry, the Institute of Evolutionary Physiology and Biochemistry, the Institute of Plant Physiology, the Institute of Molecular Biology, the Institute of the Chemistry of Natural Compounds; in academies of the various republicsthe Institute of Biochemistry of the Ukrainian SSR, the Armenian SSR, the Uzbek SSR, and the Lithuanian SSR; in branch academiesthe Institute of Biological and Medical Chemistry of the Academy of Medical Sciences of the USSR, the Biochemistry Department of the Institute of Experimental Medicine of the Academy of Medicine of the USSR, the Institute of Experimental Endocrinology and Hormone Chemistry of the Academy of Medical Sciences of the USSR, and the Institute of Nutrition of the Academy of Medical Sciences of the USSR; and in the institutes of the All-Union Academy of Agricultural Sciences and of many ministries (ministries of health, agriculture, food industry, and so on). Research in biochemistry is conducted in the bioorganic chemistry laboratory at Moscow State University and in many university subdepartments of biochemistry. Problems of biochemistry are studied in the central and branch institutes devoted to areas of botany, physiology, and pathology and in institutes of experimental and clinical medicine, the food industry, physical culture, and many other institutes. Most specialists in biochemistry, both in the USSR and abroad, are trained in universities, where the faculties of chemistry and biology contain specialized departments. Biochemists with a more limited background are trained in medical, technical, agricultural, and other institutions.

In the majority of countries, there are scientific biochemical societies united under the Federation of European Biochemical Societies and the International Union of Biochemistry. These organizations hold symposia and conferences, and also congressesyearly in the case of the Federation of European Biochemical Societies (the first took place in 1964), and once every three years in the case of the International Union of Biochemistry (the first was held in 1949; the congresses became especially popular and well attended beginning with the fifth, which was held in Moscow in 1961). In the USSR, the All-Union Biochemical Society, with numerous sections in the republics and cities, was organized in 1958. It has approximately 6,500 members. Actually, the number of biochemists in the USSR is much greater.

The quantity of periodical literature in which biochemical work is published is very great and continues to increase every year. Among the foreign and international journals, the best known are Journal of Biological Chemistry (Baltimore, 1905), Biochemistry (Washington, D.C., 1964), Archives of Biochemistry and Biophysics (New York, 1942), Biochemical Journal (London, 1906), Phytochemistry (Oxford-New York, 1962), Molecular Biology (international journal published in England), Bulletin de la Socit de Chimie Biologique (Paris, 1914), Enzymologia (The Hague, 1936), Giornale di Biochimica (Rome, 1955), Acta Biologica et Medica Germanica (Leipzig, 1959), Hoppe Seylers Zeitschrift fr physiologische Chemie (Berlin, 1877), and Journal of Biochemistry (Tokyo, 1922). Popular yearbooks include Annual Review of Biochemistry (Stanford, 1932), Advances in Enzymology and Related Subjects of Biochemistry (New York, 1945), Advances in Protein Chemistry (New York, 1945), Advances in Enzyme Regulation (Oxford, 1963), and Advances in Molecular Biology. In the USSR, experimental work in biochemistry is published in the journals Biokhimiia (Moscow, 1936), Zhurnal evoliutsionnoi biokhimii i fiziologii (Moscow, 1965), Molekuliarnaia biologiia (Moscow, 1967), Voprosy meditsinskoi khimii (Moscow, 1955), Ukrainskii biokhimicheskii zhurnal (Kiev, 1926), Prikladnaia biokhimiia i mikrobiologiia (Moscow, 1965), Doklady AN SSSR (Moscow, 1933), Biulleten eksperimentalnoi biologii i meditsiny (Moscow, 1936), Izvestiia AN SSSR: Seriia biologii i meditsiny (Moscow, 1936), Izvestiia AN SSSR: Seriia khimicheskaia (Moscow, 1936), and Nauchnye doklady vysshei shkoly: Seriia biologicheskie nauki (Moscow, 1958).

General biochemical studies are published in the journal Uspekhi sovremennoi biologii (Moscow, 1932), the yearbook Uspekhi biologicheskoi khimii (vols. 18, 195067) published by the All-Union Biochemical Society, the journals Uspekhi khimii (Moscow, 1932) and Referativnyi zhurnal: Khimiia: Biologicheskaia khimiia (Moscow, 1955), and the journal of the Mendeleev All-Union Society. Publications of biochemical institutes appear frequently.

REFERENCESHandbooksMakeev, I. A., V. S. Gulevich, and L. M. Broude. Kurs biologicheskoi khimii. Moscow, 1947.Kretovich, V. L. Osnovy biokhimii rastenii, 4th ed. Moscow, 1964.Zbarskii, B. I., I.I. Ivanov, and S. R. Mardashev. Biologicheskaia khimia, 4th ed. Moscow, 1965.Ferdman, D. L. Biokhimiia, 3rd ed. Moscow, 1966.HistoryPrianishnikov, D. I zbr. soch., vol. 1. Moscow, 1951. Pages 519.Gulevich, V. S. Izbrannye trudy. Moscow, 1954. Pages 521.Parnas, Ia. O. Izbrannye trudy. Moscow, 1960. Pages 510.Tolkachevskaia, N. F. Razvitie biokhimii zhivotnykh. Moscow, 1963.Giua, M. Istoriia khimii. Moscow, 1966. (Translated from Italian.)Razvitie biologii SSSR. Moscow, 1967.Kretovich, V. L. Vvedenie enzimologiiu. Moscow, 1967.Biokhimiia rastenii. Moscow, 1968. (Translated from English.)Lieben, F. Geschichte der physiologischen Chemie. Leipzig-Vienna, 1935.MonographsEngelgardt, V. A. Nekotorye problemy sovremennoi biokhimii. Moscow, 1959.Engelgardt, V. A. Puti khimii poznanii iavlenii zhizni. Moscow, 1965.Severin, S. E. Biokhimicheskie osnovy zhizni. Moscow, 1961.Spirin, A. S. Informatsionnaia RNK i biosintez belkov. Moscow, 1962.Skulachev, V. P. Sootnoshenie okisleniia i fosforilirovania dykhatelnoi tsepi. Moscow, 1962.Fermenty. Edited by A. E. Braunshtein. Moscow, 1964.Vladimirov, G. E., and N. S. PanteleeVa. Funktsionalnaia biokhimiia. Leningrad, 1965.Ingram, V. Biosintez makromolekul. Moscow, 1966. (Translated from English.)Racker, E. Bioenergeticheskie mekhanizmy. Moscow, 1967. (Translated from English.)Spirin, A. S., and L. P. Gavrilova. Ribosoma. Moscow, 1968.

More:
Biochemistry | Article about biochemistry by The Free ...

Grey’s Anatomy Boss Can’t Even Deal With Your MerLuca Hate …

Now Playing100 Best Shows on TV Right Now

Grey's Anatomy is now the longest-running medical drama in TV history and the Shondaland drama rang in the milestone episode by doing something they've never done before: ditch the emergency room drama.

With no medical emergency in sight, Thursday's hour put the focus on the doctors outside of Grey Sloan as Jackson's (Jesse Williams) planned party celebrating Amelia (Caterina Scorsone) and Koracick's (Greg Germann) life-saving surgery on Catherine (Debbie Allen) didn't go the way he wanted. It was an intimate hour that saw Owen and Koracick come to blows, Catherine contemplate life with cancer, Bailey (Chandra Wilson) finally treat herself, and Meredith (Ellen Pompeo) and DeLuca (Giacomo Gianniotti) take a huge step in their relationship.

Discover your new favorite show: Watch This Now!

Finally coming clean to Alex (Justin Chambers) about her new boyfriend, Meredith's reveal legitimizes their relationship as something to be taken seriously. But there may be trouble ahead with the sudden arrival of DeLuca's father (played by Lorenzo Caccialanza), who the doctor was not pleased to see. While we don't know what's ahead yet for the couple, it's clear that Meredith's life with DeLuca has been nothing but bliss so far.

"At this point, Andrew DeLuca is a wonderful surprise in Meredith's life. He is surprising to her on every level. And I think the biggest surprise for her is how much easy joy this relationship elicits," showrunner Krista Vernoff told TV Guide.

However, Meredith's new relationship, while fun, has been met with some division. While many are happy to finally see her come out of a huge funk following Derek's (Patrick Dempsey) tragic death in Season 11, some are still not ready to see her move on and that has left Vernoff baffled.

"For me, that is not even a valid debate. I am shocked that anyone could simultaneously love a character and wish that she remain without romantic love for the rest of her life no matter how long her life is. That seems like a cruelty. And it seems like a cruelty rooted in reverence for her first love and I don't relate to it. I don't understand it. The idea that anyone could root for her to live a loveless life after being widowed at such a young age is crazy to me," Vernoff said.

Derek's significance to Meredith can never be overstated. He was her first great love and his memory lives on through her and their children, but it's time for Meredith to start a new chapter in her romantic life.

"I think that the show spent years paying homage to the love that was built for the first 11 or so seasons with Derek. If you look at her in the post-Derek years, she's not wearing makeup. She took herself to and through that place of grief and that place of what does it matter and OK I'm spending my life alone now and I've hung it up now," Vernoff explained.

She continued: "And now if you look, you're starting to see more makeup, more wardrobe. Nail polish. She's very subtly returning ... to the land of the living and the land of the romantic living. It's a relief now for the character to be emerging and letting Derek live in a beautiful place rather than a deeply painful place in her memory."

Grey's Anatomy airs Thursdays at 8/7c on ABC.

PHOTOS: These Are the 100 Best Shows Right Now

Game of Thrones

Read the original here:
Grey's Anatomy Boss Can't Even Deal With Your MerLuca Hate ...

United Neuroscience – Official Site

We are pioneering a new class of medicine we call endobody vaccines that are fully synthetic and train the body to safely and efficiently treat and prevent neurological disease.We are not afraid to be brave and tackle the seemingly impossible. We are committed to transforming the lives of all patients and families affected by Alzheimers, Parkinsons, CTE and other neurological diseases.We envision a world where neurodegenerative diseases are prophylactically eradicated.

Read more from the original source:
United Neuroscience - Official Site

Theories Used in Social Work Practice & Practice Models

Social work theories are general explanations that are supported by evidence obtained through the scientific method. A theory may explain human behavior, for example, by describing how humans interact or how humans react to certain stimuli.

Social work practice models describe how social workers can implement theories. Practice models provide social workers with a blueprint of how to help others based on the underlying social work theory. While a theory explains why something happens, a practice model shows how to use a theory to create change.

Social Work Theories

There are many social work theories that guide social work practice. Here are some of the major theories that are generally accepted in the field of social work:

Systems theorydescribes human behavior in terms of complex systems. It is premised on the idea that an effective system is based on individual needs, rewards, expectations, and attributes of the people living in the system. According to this theory, families, couples, and organization members are directly involved in resolving a problem even if it is an individual issue.

Social learning theoryis based on Albert Banduras idea that learning occurs through observation and imitation. New behavior will continue if it is reinforced. According to this theory, rather than simply hearing a new concept and applying it, the learning process is made more efficient if the new behavior is modeled as well.

Psychosocial development theoryis an eight-stage theory of identity and psychosocial development articulated by Erik Erikson. Erikson believed everyone must pass through eight stages of development over the life cycle: hope, will, purpose, competence, fidelity, love, care, and wisdom. Each stage is divided into age ranges from infancy to older adults.

Psychodynamic theorywas developed by Freud, and it explains personality in terms of conscious and unconscious forces. This social work theory describes the personality as consisting of the id (responsible for following basic instincts), the superego (attempts to follow rules and behave morally), and the ego (mediates between the id and the ego).

Transpersonal theoryproposes additional stages beyond the adult ego. In healthy individuals, these stages contribute to creativity, wisdom, and altruism. In people lacking healthy ego development, experiences can lead to psychosis.

Rational choice theoryis based on the idea that all action is fundamentally rational in character, and people calculate the risks and benefits of any action before making decisions.

Social Work Practice Models

There are many different practice models that influence the way social workers choose to help people meet their goals. Here are some of the major social work practice models used in various roles, such as case managers and therapists:

Problem solvingassists people with the problem solving process. Rather than tell clients what to do, social workers teach clients how to apply a problem solving method so they can develop their own solutions.

Task-centered practiceis a short-term treatment where clients establish specific, measurable goals. Social workers and clients collaborate together and create specific strategies and steps to begin reaching those goals.

Narrative therapyexternalizes a persons problem by examining the story of the persons life. In the story, the client is not defined by the problem, and the problem exists as a separate entity. Instead of focusing on a clients depression, in this social work practice model, a client would be encouraged to fight against the depression by looking at the skills and abilities that may have previously been taken for granted.

Cognitive behavioral therapyfocuses on the relationship between thoughts, feelings, and behaviors. Social workers assist clients in identifying patterns of irrational and self-destructive thoughts and behaviors that influence emotions.

Crisis intervention modelis used when someone is dealing with an acute crisis. The model includes seven stages: assess safety and lethality, rapport building, problem identification, address feelings, generate alternatives, develop an action plan, and follow up. This social work practice model is commonly used with clients who are expressing suicidal ideation.

Read more from the original source:
Theories Used in Social Work Practice & Practice Models