The history of biochemistry can be said to have started with the ancient Greeks who were interested in the composition and processes of life, although biochemistry as a specific scientific discipline has its beginning around the early 19th century.[1] Some argued that the beginning of biochemistry may have been the discovery of the first enzyme, diastase (today called amylase), in 1833 by Anselme Payen,[2] while others considered Eduard Buchner's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts to be the birth of biochemistry.[3][4] Some might also point to the influential work of Justus von Liebig from 1842, Animal chemistry, or, Organic chemistry in its applications to physiology and pathology, which presented a chemical theory of metabolism,[1] or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier.[5][6]
The term biochemistry itself is derived from the combining form bio-, meaning "life", and chemistry. The word is first recorded in English in 1848,[7] while in 1877, Felix Hoppe-Seyler used the term (Biochemie in German) in the foreword to the first issue of Zeitschrift fr Physiologische Chemie (Journal of Physiological Chemistry) as a synonym for physiological chemistry and argued for the setting up of institutes dedicate to its studies.[8][9] Nevertheless, several sources cite German chemist Carl Neuberg as having coined the term for the new discipline in 1903,[10][11] and some credit it to Franz Hofmeister.[12]
The subject of study in biochemistry is the chemical processes in living organisms, and its history involves the discovery and understanding of the complex components of life and the elucidation of pathways of biochemical processes. Much of biochemistry deals with the structures and functions of cellular components such as proteins, carbohydrates, lipids, nucleic acids and other biomolecules; their metabolic pathways and flow of chemical energy through metabolism; how biological molecules give rise to the processes that occur within living cells; it also focuses on the biochemical processes involved in the control of information flow through biochemical signalling, and how they relate to the functioning of whole organisms. Over the last 40 years the field has had success in explaining living processes such that now almost all areas of the life sciences from botany to medicine are engaged in biochemical research.
Among the vast number of different biomolecules, many are complex and large molecules (called polymers), which are composed of similar repeating subunits (called monomers). Each class of polymeric biomolecule has a different set of subunit types. For example, a protein is a polymer whose subunits are selected from a set of twenty or more amino acids, carbohydrates are formed from sugars known as monosaccharides, oligosaccharides, and polysaccharides, lipids are formed from fatty acids and glycerols, and nucleic acids are formed from nucleotides. Biochemistry studies the chemical properties of important biological molecules, like proteins, and in particular the chemistry of enzyme-catalyzed reactions. The biochemistry of cell metabolism and the endocrine system has been extensively described. Other areas of biochemistry include the genetic code (DNA, RNA), protein synthesis, cell membrane transport, and signal transduction.
In these regards, the study of biochemistry began when biology first began to interest societyas the ancient Chinese developed a system of medicine based on yin and yang, and also the five phases,[13] which both resulted from alchemical and biological interests. It began in the ancient Indian culture also with an interest in medicine, as they developed the concept of three humors that were similar to the Greek's four humours (see humorism). They also delved into the interest of bodies being composed of tissues. As in the majority of early sciences, the Islamic world greatly contributed to early biological advancements as well as alchemical advancements; especially with the introduction of clinical trials and clinical pharmacology presented in Avicenna's The Canon of Medicine.[14] On the side of chemistry, early advancements were heavily attributed to exploration of alchemical interests but also included: metallurgy, the scientific method, and early theories of atomism. In more recent times, the study of chemistry was marked by milestones such as the development of Mendeleev's periodic table, Dalton's atomic model, and the conservation of mass theory. This last mention has the most importance of the three due to the fact that this law intertwines chemistry with thermodynamics in an intercalated manner.
As early as the late 18th century and early 19th century, the digestion of meat by stomach secretions[15] and the conversion of starch to sugars by plant extracts and saliva were known. However, the mechanism by which this occurred had not been identified.[16]
In the 19th century, when studying the fermentation of sugar to alcohol by yeast, Louis Pasteur concluded that this fermentation was catalyzed by a vital force contained within the yeast cells called ferments, which he thought functioned only within living organisms. He wrote that "alcoholic fermentation is an act correlated with the life and organization of the yeast cells, not with the death or putrefaction of the cells."[17]
Anselme Payen discovered in 1833 the first enzyme who called diastase[18] and in 1878 German physiologist Wilhelm Khne (18371900) coined the term enzyme, which comes from Greek "in leaven", to describe this process. The word enzyme was used later to refer to nonliving substances such as pepsin, and the word ferment used to refer to chemical activity produced by living organisms.
In 1897 Eduard Buchner began to study the ability of yeast extracts to ferment sugar despite the absence of living yeast cells. In a series of experiments at the University of Berlin, he found that the sugar was fermented even when there were no living yeast cells in the mixture.[19] He named the enzyme that brought about the fermentation of sucrose "zymase".[20] In 1907 he received the Nobel Prize in Chemistry "for his biochemical research and his discovery of cell-free fermentation". Following Buchner's example; enzymes are usually named according to the reaction they carry out. Typically the suffix -ase is added to the name of the substrate (e.g., lactase is the enzyme that cleaves lactose) or the type of reaction (e.g., DNA polymerase forms DNA polymers).
Having shown that enzymes could function outside a living cell, the next step was to determine their biochemical nature. Many early workers noted that enzymatic activity was associated with proteins, but several scientists (such as Nobel laureate Richard Willsttter) argued that proteins were merely carriers for the true enzymes and that proteins per se were incapable of catalysis. However, in 1926, James B. Sumner showed that the enzyme urease was a pure protein and crystallized it; Sumner did likewise for the enzyme catalase in 1937. The conclusion that pure proteins can be enzymes was definitively proved by Northrop and Stanley, who worked on the digestive enzymes pepsin (1930), trypsin and chymotrypsin. These three scientists were awarded the 1946 Nobel Prize in Chemistry.[21]
This discovery, that enzymes could be crystallized, meant that scientists eventually could solve their structures by x-ray crystallography. This was first done for lysozyme, an enzyme found in tears, saliva and egg whites that digests the coating of some bacteria; the structure was solved by a group led by David Chilton Phillips and published in 1965.[22] This high-resolution structure of lysozyme marked the beginning of the field of structural biology and the effort to understand how enzymes work at an atomic level of detail.
The term metabolism is derived from the Greek Metabolismos for "change", or "overthrow".[23] The history of the scientific study of metabolism spans 800 years. The earliest of all metabolic studies began during the early thirteenth century (1213-1288) by a Muslim scholar from Damascus named Ibn al-Nafis. al-Nafis stated in his most well-known work Theologus Autodidactus that "that body and all its parts are in a continuous state of dissolution and nourishment, so they are inevitably undergoing permanent change."[24] Although al-Nafis was the first documented physician to have an interest in biochemical concepts, the first controlled experiments in human metabolism were published by Santorio Santorio in 1614 in his book Ars de statica medecina.[25] This book describes how he weighed himself before and after eating, sleeping, working, sex, fasting, drinking, and excreting. He found that most of the food he took in was lost through what he called "insensible perspiration".
One of the most prolific of these modern biochemists was Hans Krebs who made huge contributions to the study of metabolism.[26] He discovered the urea cycle and later, working with Hans Kornberg, the citric acid cycle and the glyoxylate cycle.[27][28][29] These discoveries led to Krebs being awarded the Nobel Prize in physiology in 1953,[30] which was shared with the German biochemist Fritz Albert Lipmann who also codiscovered the essential cofactor coenzyme A.
In 1960, the biochemist Robert K. Crane revealed his discovery of the sodium-glucose cotransport as the mechanism for intestinal glucose absorption.[31] This was the very first proposal of a coupling between the fluxes of an ion and a substrate that has been seen as sparking a revolution in biology. This discovery, however, would not have been possible if it were not for the discovery of the molecule glucose's structure and chemical makeup. These discoveries are largely attributed to the German chemist Emil Fischer who received the Nobel Prize in chemistry nearly 60 years earlier.[32]
Since metabolism focuses on the breaking down (catabolic processes) of molecules and the building of larger molecules from these particles (anabolic processes), the use of glucose and its involvement in the formation of adenosine triphosphate (ATP) is fundamental to this understanding. The most frequent type of glycolysis found in the body is the type that follows the Embden-Meyerhof-Parnas (EMP) Pathway, which was discovered by Gustav Embden, Otto Meyerhof, and Jakob Karol Parnas. These three men discovered that glycolysis is a strongly determinant process for the efficiency and production of the human body. The significance of the pathway shown in the adjacent image is that by identifying the individual steps in this process doctors and researchers are able to pinpoint sites of metabolic malfunctions such as pyruvate kinase deficiency that can lead to severe anemia. This is most important because cells, and therefore organisms, are not capable of surviving without proper functioning metabolic pathways.
Since then, biochemistry has advanced, especially since the mid-20th century, with the development of new techniques such as chromatography, X-ray diffraction, NMR spectroscopy, radioisotopic labelling, electron microscopy and molecular dynamics simulations. These techniques allowed for the discovery and detailed analysis of many molecules and metabolic pathways of the cell, such as glycolysis and the Krebs cycle (citric acid cycle). The example of an NMR instrument shows that some of these instruments, such as the HWB-NMR, can be very large in size and can cost anywhere from a few hundred dollars to millions of dollars ($16 million for the one shown here).
Polymerase chain reaction (PCR) is the primary gene amplification technique that has revolutionized modern biochemistry. Polymerase chain reaction was developed by Kary Mullis in 1983.[33] There are four steps to a proper polymerase chain reaction: 1) denaturation 2) extension 3) insertion (of gene to be expressed) and finally 4) amplification of the inserted gene. These steps with simple illustrative examples of this process can be seen in the image below and to the right of this section. This technique allows for the copy of a single gene to be amplified into hundreds or even millions of copies and has become a cornerstone in the protocol for any biochemist that wishes to work with bacteria and gene expression. PCR is not only used for gene expression research but is also capable of aiding laboratories in diagnosing certain diseases such a lymphomas, some types of leukemia, and other malignant diseases that can sometimes puzzle doctors. Without polymerase chain reaction development, there are many advancements in the field of bacterial study and protein expression study that would not have come to fruition.[34] The development of the theory and process of polymerase chain reaction is essential but the invention of the thermal cycler is equally as important because the process would not be possible without this instrument. This is yet another testament to the fact that the advancement of technology is just as crucial to sciences such as biochemistry as is the painstaking research that leads to the development of theoretical concepts.
See the rest here:
History of biochemistry - Wikipedia
- CU Boulder Biochemistry Professor Xuedong Liu Recognized as an elite member of the 2024 Class of Fellows by the National Academy of Investors (NAI) -... - December 23rd, 2024 [December 23rd, 2024]
- ACBICON 2024 Shines Bright: Celebrating 50 Years of Excellence in Clinical Biochemistry - :: India News Calling :: - December 9th, 2024 [December 9th, 2024]
- Teen achiever eyes global impact in medicine and biochemistry - Jamaica Gleaner - December 9th, 2024 [December 9th, 2024]
- Biochemistry senior connects with community through service organizations - University of South Carolina - November 28th, 2024 [November 28th, 2024]
- 2025 Summer Intern - Peptide Therapeutics, Early Discovery Biochemistry - Genentech - November 28th, 2024 [November 28th, 2024]
- Postdoctoral Position in Structural Biology/Biochemistry - Helsinki, Finland job with UNIVERSITY OF HELSINKI | 384233 - Times Higher Education - November 28th, 2024 [November 28th, 2024]
- Neugebauer named Rose Professor of Molecular Biophysics and Biochemistry - Yale News - November 28th, 2024 [November 28th, 2024]
- Scholarship has Timmins biochemistry student hopeful for the future - TimminsToday - November 20th, 2024 [November 20th, 2024]
- Lu Bai named Verne M. Willaman Professor of Biochemistry and Molecular Biology - Penn State University - November 12th, 2024 [November 12th, 2024]
- Biochemistry and biotechnology major Jay King nearing graduation with plans to pursue PhD in oncologic research - UMSL Daily - November 12th, 2024 [November 12th, 2024]
- A Biochemistry Teaching Experiment That Demonstrates the Digestion of Carbohydrates, Proteins, and Lipids in the Digestive Tract - ACS Publications - November 12th, 2024 [November 12th, 2024]
- SBU Biochemistry alumnus to discuss how plants defend themselves against bacterial pathogens - St. Bonaventure - October 13th, 2024 [October 13th, 2024]
- Exploring the Frontiers of Metabolic Research in Cancer: An Interview with Dr. Alice Chang, B. Pharm., Ph.D. at China Medical University, Institute of... - October 2nd, 2024 [October 2nd, 2024]
- The Hidden Biochemistry of Cold Temperatures: Chilling RNA Discovery Reshapes the Rules of Life - SciTechDaily - September 23rd, 2024 [September 23rd, 2024]
- New sweatband keeps tabs on body biochemistry - The Naked Scientists - September 15th, 2024 [September 15th, 2024]
- Celebrating 25 years of innovation at the department of biochemistry & medical genetics - UM Today - September 15th, 2024 [September 15th, 2024]
- Vinesh Phogat versus the perplexing biochemistry of losing weight - The Hindu - September 2nd, 2024 [September 2nd, 2024]
- Girirajan named head of the Department of Biochemistry and Molecular Biology - Penn State University - July 26th, 2024 [July 26th, 2024]
- Scientists uncover a multibillion-year epic written into the chemistry of life - EurekAlert - June 1st, 2024 [June 1st, 2024]
- Electrolyte and Biochemistry Analyzers Market Is Likely to Experience a Tremendous Growth by 2031 - openPR - June 1st, 2024 [June 1st, 2024]
- Scientists uncover missing link in the Chemistry of Life - Tech Explorist - June 1st, 2024 [June 1st, 2024]
- From negative results to new discoveries in chloroplast biochemistry - Phys.org - April 15th, 2024 [April 15th, 2024]
- Protecting art and passwords with biochemistry - Tech Xplore - April 15th, 2024 [April 15th, 2024]
- 'Always more to discover:' Clarke biochemistry professor shares love of the Bard through Dubuque Shakespeare Project - telegraphherald.com - April 15th, 2024 [April 15th, 2024]
- American Society of Biochemistry and Molecular Biology honors MD/PhD student Hannah Kondolf - The Daily | Case Western Reserve University - April 7th, 2024 [April 7th, 2024]
- Biochemistry and transcriptomic analyses of Phthorimaea absoluta (Lepidoptera: Gelechiidae) response to insecticides ... - Nature.com - April 7th, 2024 [April 7th, 2024]
- Differential responses of Hollyhock (Alcea rosea L.) varieties to salt stress in relation to physiological and biochemical ... - Nature.com - April 7th, 2024 [April 7th, 2024]
- Life's Origins: How Fissures in Hot Rocks May Have Kickstarted Biochemistry - Singularity Hub - April 7th, 2024 [April 7th, 2024]
- Professor Robert Cross awarded Biochemical Society Award for Sustained Excellence - University of Warwick - April 7th, 2024 [April 7th, 2024]
- Study suggests that estrogen may drive nicotine addiction in women - EurekAlert - March 29th, 2024 [March 29th, 2024]
- Yale men's basketball confused for university's Molecular Biophysics and Biochemistry on Twitter - Sporting News - March 29th, 2024 [March 29th, 2024]
- Plants have an astonishing biochemical communication network - Earth.com - March 29th, 2024 [March 29th, 2024]
- Study links long-term consumption of deep-fried oil with increased neurodegeneration - ASBMB Today - March 29th, 2024 [March 29th, 2024]
- New surfactant could improve lung treatments for premature babies - ASBMB Today - March 29th, 2024 [March 29th, 2024]
- The Power and Promise of RNA - Duke University School of Medicine - March 29th, 2024 [March 29th, 2024]
- Commonwealth University biochemistry and pre-medicine concentrations accredited - Lock Haven Express - February 13th, 2024 [February 13th, 2024]
- Afternoon of Science Series: Department of Biochemistry & Molecular Biophysics - Columbia University Irving Medical Center - February 13th, 2024 [February 13th, 2024]
- What Casual Sex, Pigeon Relationships, Bioluminescence and a Drug for Broken Hearts can Tell us About the ... - Nautilus - February 13th, 2024 [February 13th, 2024]
- $2.4 Million in Funding Awarded to Chemistry and Biochemistry Faculty | CSUF News - CSUF News - February 13th, 2024 [February 13th, 2024]
- Associate Professor in Biochemistry and Director of NIH-Funded COBRE job with UNIVERSITY OF NEW HAMPSHIRE ... - Nature.com - February 13th, 2024 [February 13th, 2024]
- USM Chemistry (Biochemistry Emphasis) Degree Earns ASBMB Reaccreditation - The University of Southern Mississippi - February 4th, 2024 [February 4th, 2024]
- AI generates proteins with exceptional binding strength - ASBMB Today - February 4th, 2024 [February 4th, 2024]
- A safe place where biochemistry is valued - ASBMB Today - October 27th, 2023 [October 27th, 2023]
- Chair (W3) of Biochemistry job with TECHNISCHE UNIVERSITAT ... - Times Higher Education - October 27th, 2023 [October 27th, 2023]
- The Biochemistry of Muscle Contraction - Discovery Institute - October 27th, 2023 [October 27th, 2023]
- Department of Biochemistry and Molecular Biology chair and ... - University of Iowa Health Care - October 27th, 2023 [October 27th, 2023]
- Two decorated Brandeis faculty awarded National Medal of Science ... - Brandeis University - October 27th, 2023 [October 27th, 2023]
- Research Assistant / Associate (Department of Biochemistry) job ... - Times Higher Education - October 27th, 2023 [October 27th, 2023]
- ASBMB weighs in on policy changes for dual-use research - ASBMB Today - October 27th, 2023 [October 27th, 2023]
- In the Locker Room with Katie Austin, Mia Brito, and Alaina Di Dio ... - The Oberlin Review - October 27th, 2023 [October 27th, 2023]
- Dr. Tara Schwetz named NIH Deputy Director for Program ... - National Institutes of Health (.gov) - October 27th, 2023 [October 27th, 2023]
- Armstrong Welcomes Burning Swamp The George-Anne Media ... - The George-Anne - October 27th, 2023 [October 27th, 2023]
- Summer Research Projects Grow Depth of Knowledge - Taylor University - October 27th, 2023 [October 27th, 2023]
- Brookings Register | Speakout: Decarbonize industry with nuclear ... - Brookings Register - October 27th, 2023 [October 27th, 2023]
- Professor Yong Sik Ok becomes the first Korean President of the ... - EurekAlert - October 27th, 2023 [October 27th, 2023]
- Partnership between UCR and City of Hope aims to increase ... - UC Riverside - October 27th, 2023 [October 27th, 2023]
- The seeds have been planted: The beautification of Ernst Nature ... - Miami Student - October 27th, 2023 [October 27th, 2023]
- Biochemist selected as Innovation Fund investigator by Pew ... - Pennsylvania State University - October 27th, 2023 [October 27th, 2023]
- UTHealth Houston researchers awarded $3.4M NIH grant to study ... - EurekAlert - October 27th, 2023 [October 27th, 2023]
- Centre professor, students working toward rapid, affordable ... - Danville Advocate - October 27th, 2023 [October 27th, 2023]
- SUNY Potsdam faculty want to keep 13 of 14 programs eyed for cuts ... - The Adirondack Daily Enterprise - October 27th, 2023 [October 27th, 2023]
- Fall Awards recognize long years of service to UWM - University of WisconsinMilwaukee - October 27th, 2023 [October 27th, 2023]
- Shobade selected for inaugural innovation in agriculture award - College of Agriculture and Life Sciences - April 8th, 2023 [April 8th, 2023]
- Three juniors selected as Goldwater Scholars - The Source ... - Washington University in St. Louis - April 8th, 2023 [April 8th, 2023]
- Senior Awarded Fulbright to Germany Susquehanna University - Susquehanna University - April 8th, 2023 [April 8th, 2023]
- CI MED Students Win Top Honors At Startup Showcase at ... - Carle Illinois College of Medicine - April 8th, 2023 [April 8th, 2023]
- Gregory Bowman: Penn Integrates Knowledge University Professor ... - University of Pennsylvania - April 8th, 2023 [April 8th, 2023]
- The Columns W&L's Jaden Keuhner '24 Featured in WSLS 10 ... - The Columns - April 8th, 2023 [April 8th, 2023]
- New anticancer agent activated by ultrasound waves does not have strong side effects - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Obituary for Alison Lynn Smoot-Pierce, Conway, SC - Arkansas Online - April 8th, 2023 [April 8th, 2023]
- Finding a way to combat long COVID - EurekAlert - April 8th, 2023 [April 8th, 2023]
- High schoolers awarded for action research | Sioux Center News - nwestiowa.com - April 8th, 2023 [April 8th, 2023]
- Emory researchers discover key pathway for COVID-19 organ ... - Emory News Center - April 8th, 2023 [April 8th, 2023]
- Auburn chemistry graduate student shines as only Southeastern ... - Office of Communications and Marketing - April 8th, 2023 [April 8th, 2023]
- Study uncovers aspect of how muscular dystrophies progress - ASBMB Today - April 8th, 2023 [April 8th, 2023]
- Broccoli intake protects the small intestine lining, inhibits development of disease - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- The Greek who gave $600 million to education - Kathimerini English Edition - April 8th, 2023 [April 8th, 2023]
- Man linked to firebombing of Wisconsin anti-abortion group via leftover burrito - Yahoo News - April 8th, 2023 [April 8th, 2023]
- Important enzyme for the composition of the gut microbiome discovered - Phys.org - April 8th, 2023 [April 8th, 2023]
- Unraveling the protein map of cell's powerhouse - ASBMB Today - April 8th, 2023 [April 8th, 2023]