UCSD Chemistry and Biochemistry

Thank you for visiting the Department of Chemistry and Biochemistry. Ours is a vibrant and dynamic Department that combines research on the most consequential and revelatory scientific areas with education aimed at building our future leaders and informed citizens.

The research we engage in is marked by its breadth from atomic to cellular, from origins of life to climate change, from single molecules to systems level, from sustainable energy to cancer cures, from nanomaterials to solar systems, from infectious diseases to semiconductors, from RNA splicing to condensed phases, from protein structure to three-body problems, from lipid maps to stable carbenes, and so on. Along with these areas, we also engage in understanding how best to communicate scientific knowledge to our students. All these research efforts are made possible by the approximately $33M of sponsored research funds raised yearly by our faculty, and the array of advanced technologies acquired by our faculty to probe ever deeper into fundamental questions. Our faculty has been acknowledged for their creativity. We have Nobel Prize winners, members of the National Academy of Sciences, and HHMI Investigators among others.

Research is but one facet of our efforts. The other central facet is teaching. In this, we seek not only to convey the wisdom of ages but also the excitement of new scientific findings. The changes in our daily lives that these discoveries are making are enormous, and the pace at which these discoveries are being made is ever increasing. This means that one of our fundamental tasks is to help students understand what lies at the forefront of knowledge, so that they can understand how best to address current and future problems. We find the daily engagement with students to be energizing, and view scientific breakthroughs to be on equal footing with those moments in which we are able to convey an idea so that a student gets it. We teach 22,000 undergraduates and 2,000 graduate students in our courses. We have 1,000 undergraduate majors along with 40 Masters and 200 PhD students, and we train more than 100 Postdoctoral Researchers.

The Department recognizes that science is carried out in a societal context, and values diversity, equity, and inclusion among its faculty, researchers, and students. Indeed, our faculty is one of the most diverse among Chemistry departments. However, we recognize much work remains to be done and we continue to work towards increasing diversity throughout the Department.

I hope you will take some time to look around and learn about the superb research and teaching going on in the Department of Chemistry and Biochemistry.

Partho Ghosh, Chair

Macromolecular, cryoelectron microscopy and three-dimensional, image-reconstruction techniques.

Chemical Education: Development of context-rich curriculum; Use of collaborative learning strategies in large lectures; Communication of chemistry

Natural product synthesis/biosynthesis, Biological chemistry and enzymology, Metabolic engineering.

Chemical Education: Visual Literacy in Science, Biochemistry Education, Nano Science Education, K-20 Professional Development, and STEM Career Development

Bioinorganic and coordination chemistry. Metalloprotein inhibitors and supramolecular materials.

Dissociation dynamics of transient species, three-body reaction dynamics, novel mass-spectrometric methods

Materials chemistry, surface kinetics of metals/semiconductors, CVD, photo-induced deposition, thin-film spectroscopy.

Biochemistry: phospholipase A2, signal transduction in macrophages, lipid maps, prostaglandin regulation, mass spec of lipids and proteins.

Biomimetic Chemistry, Molecular Imaging, Electrochemistry

Protein Tyrosine Phosphatase, Dual=specific Phosphatase, PTEN

Inorganic and Organometallic Chemistry: Synthesis, Small Molecule Activation and New Transformations.

Electron Transport in Condensed Phases. Dissipation and Relaxation Processes. Non-equilibrium Open Quantum Systems. Molecular Electronics.

Biochemistry and biophysics: transcription, signaling, pre-mRNA splicing, mRNA transport, protein-protein, protein-DNA and protein-RNA interactions

Mechanisms of bacterial and protozoan pathogenesis, and host response against infectious microbes.

Bioorganic chemistry, Supramolecular Chemistry, Bionanotechnology, Materials, Synthesis

Nanotechnologies for analysis of glycan function during development. Glycomaterials for stem cell-based tissue regeneration.

Biophysical chemistry: protein structure, dynamics and folding; 2, 3 and 4D NMR spectroscopy; PCR; equilibrium and kinetic-fluorescence, absorbance and circular dichroism spectroscopies

Biophysical chemistry: Spectroscopic studies of membrane protein folding and dynamics

Structure, function, dynamics and thermodynamics of protein-protein interactions: NMR, mass spectrometry and kinetics

Inorganic, materials, and physical chemistry: electron transfer, catalysis, fixation and utilization of carbon dioxide.

STM/STS of gate oxides on compound semiconductors and adsorbates on organic semiconductor

Theoretical chemical physics: non-equilibrium statistical mechanics; stochastic processes; nonlinear phenomena; complex systems; condensed matter.

Statistical mechanics and computational chemistry, with applications to biological systems

Physical Chemistry: Gas Phase Chemical Kinetics and Photochemistry; Chemistry of Atmospheric Aerosols; Air Pollution in Megacities of the Developing World

Organic chemistry of marine natural products, synthesis, NMR, and biomedical applications

Evolution of catalytic RNAs, and the Origin of Life

Organotransition metal; organic; physical organic; bioorganometallic; synthetic; and inorganic chemistry

NMR structural studies of proteins in membranes and other supramolecular assemblies

Theoretical chemical physics of complex interfaces of relevance to the environment

Physical-organic chemistry: stereoelectronic effects; hydrogen bonding; isotope effects; ionic solvation; naked anions; malonic anhydrides

The application of analytical chemistry to forensic, environmental and industrial chemistry, then bridge these experiences into the classroom. This also includes the role technology and instrumentation play in discovery and problem solving.

Environmental, physical/analytical chemistry: gas/particle processes of tropospheric significance; mass spectrometry; laser-based analysis techniques.

Inorganic chemistry: Small-molecule crystallography, synthesis of transition metal/p-block clusters

Nanomaterials: porous silicon, chemical and biological sensors, biomaterials, electrochemistry

Chemical education: development of computer-based multimedia to assist student learning of complex scientific processes and concepts

Experimental physical chemistry: photochemistry; laser spectroscopy; reaction dynamics of vibrationally excited molecules

Physical chemistry; Optical and magnetic spectroscopy; Fundamental studies of charge transport and solvation; Applications to energy conversion and energy storage.

Structure, Function, Dynamics, and Localization of PKA as a Prototype for the Protein Kinase Superfamily.

Bioinorganic and biophysical chemistry; Metalloprotein structure, function and biosynthesis; Biomaterials

Synthetic, Medicinal, Bioorganic and Biological Chemistry, Methods and Strategies in Natural Products Chemistry

Atmospheric chemistry: physical chemistry of isotope effects; solar system formation

Structure and Function of Introns and Retroelements

Ligand-nucleic acid interactions; Antiviral and antibacterial agents; Fluorescent nucleosides and nucleotides; Cellular delivery vehicles

Chemical biology; design, synthesis, and application of molecular probes of biological function

epigenomics, cellular reprogramming, protein recognition, computational biology, systems biology

Physical chemistry: calculations of the dynamics of complex systems; theoretical geochemistry

Spatio-temporal signaling control of biological self-organization. Signaling networks in innate immunity. Microscopy; Mathematical modeling; Computational image analysis; Systems Biology.

Investigation of charge transfer mechanism in nanomaterials with novel ultrafast spectroscopies

Bioorganic Chemistry, Molecular Self-Assembly, Molecular Synthesis, Materials Chemistry, Bionanotechnology

Theory at the interface of chemistry, condensed matter, and materials physics

Gene Expression Control During Stress; mRNA Localization to Membrane-Less Compartments

Dr. Charles W. Machan

Originally posted here:

UCSD Chemistry and Biochemistry

Related Posts