Category Archives: Anatomy

Watch Grey’s Anatomy Online – at Hulu

To enjoy Hulu.com, you'll need to enable JavaScript in your web browser. Please click here to learn how. Watch TV shows and movies free online. Stream episodes of Family Guy, Grey's Anatomy, SNL, Modern Family and many more hit shows.

It appears that software on your computer is blocking JavaScript. To enjoy Hulu.com, you'll need to enable JavaScript in your web browser. Please configure your security software or browser plugins to allow Hulu.com to load JavaScript.

If you require assistance, please contact customer support.

Original post:

Watch Grey's Anatomy Online - at Hulu

anatomy | biology | Britannica.com

Anatomy,a field in the biological sciences concerned with the identification and description of the body structures of living things. Gross anatomy involves the study of major body structures by dissection and observation and in its narrowest sense is concerned only with the human body. Gross anatomy customarily refers to the study of those body structures large enough to be examined without the help of magnifying devices, while microscopic anatomy is concerned with the study of structural units small enough to be seen only with a light microscope. Dissection is basic to all anatomical research. The earliest record of its use was made by the Greeks, and Theophrastus called dissection anatomy, from ana temnein, meaning to cut up.

Comparative anatomy, the other major subdivision of the field, compares similar body structures in different species of animals in order to understand the adaptive changes they have undergone in the course of evolution.

face: superficial arteries and veins in humansEncyclopdia Britannica, Inc.This ancient discipline reached its culmination between 1500 and 1850, by which time its subject matter was firmly established. None of the worlds oldest civilizations dissected a human body, which most people regarded with superstitious awe and associated with the spirit of the departed soul. Beliefs in life after death and a disquieting uncertainty concerning the possibility of bodily resurrection further inhibited systematic study. Nevertheless, knowledge of the body was acquired by treating wounds, aiding in childbirth, and setting broken limbs. The field remained speculative rather than descriptive, though, until the achievements of the Alexandrian medical school and its foremost figure, the Greek Herophilus (flourished 300 bce), who dissected human cadavers and thus gave anatomy a considerable factual basis for the first time. Herophilus made many important discoveries and was followed by his younger contemporary Erasistratus, who is sometimes regarded as the founder of physiology. In the 2nd century ce the Greek physician Galen assembled and arranged all the discoveries of the Greek anatomists, including with them his own concepts of physiology and his discoveries in experimental medicine. The many books Galen wrote became the unquestioned authority for anatomy and medicine in Europe because they were the only ancient Greek anatomical texts that survived the Dark Ages in the form of Arabic (and then Latin) translations.

Owing to church prohibitions against dissection, European medicine in the Middle Ages relied upon Galens mixture of fact and fancy rather than on direct observation for its anatomical knowledge, though some dissections were authorized for teaching purposes. In the early 16th century, the artist Leonardo da Vinci undertook his own dissections, and his beautiful and accurate anatomical drawings cleared the way for the Flemish physician Andreas Vesalius to restore the science of anatomy with his monumental De humani corporis fabrica libri septem (1543; The Seven Books on the Structure of the Human Body), which was the first comprehensive and illustrated textbook of anatomy. As a professor at the University of Padua, Vesalius encouraged younger scientists to accept traditional anatomy only after verifying it themselves, and this more critical and questioning attitude broke Galens authority and placed anatomy on a firm foundation of observed fact and demonstration.

From Vesaliuss exact descriptions of the skeleton, muscles, blood vessels, nervous system, and digestive tract, his successors in Padua progressed to studies of the digestive glands and the urinary and reproductive systems. Hieronymus Fabricius, Gabriello Fallopius, and Bartolomeo Eustachio were among the most important Italian anatomists, and their detailed studies led to fundamental progress in the related field of physiology. William Harveys discovery of the circulation of the blood, for instance, was based partly on Fabriciuss detailed descriptions of the venous valves.

The new application of magnifying glasses and compound microscopes to biological studies in the second half of the 17th century was the most important factor in the subsequent development of anatomical research. Primitive early microscopes enabled Marcello Malpighi to discover the system of tiny capillaries connecting the arterial and venous networks, Robert Hooke to first observe the small compartments in plants that he called cells, and Antonie van Leeuwenhoek to observe muscle fibres and spermatozoa. Thenceforth attention gradually shifted from the identification and understanding of bodily structures visible to the naked eye to those of microscopic size.

The use of the microscope in discovering minute, previously unknown features was pursued on a more systematic basis in the 18th century, but progress tended to be slow until technical improvements in the compound microscope itself, beginning in the 1830s with the gradual development of achromatic lenses, greatly increased that instruments resolving power. These technical advances enabled Matthias Jakob Schleiden and Theodor Schwann to recognize in 183839 that the cell is the fundamental unit of organization in all living things. The need for thinner, more transparent tissue specimens for study under the light microscope stimulated the development of improved methods of dissection, notably machines called microtomes that can slice specimens into extremely thin sections. In order to better distinguish the detail in these sections, synthetic dyes were used to stain tissues with different colours. Thin sections and staining had become standard tools for microscopic anatomists by the late 19th century. The field of cytology, which is the study of cells, and that of histology, which is the study of tissue organization from the cellular level up, both arose in the 19th century with the data and techniques of microscopic anatomy as their basis.

In the 20th century anatomists tended to scrutinize tinier and tinier units of structure as new technologies enabled them to discern details far beyond the limits of resolution of light microscopes. These advances were made possible by the electron microscope, which stimulated an enormous amount of research on subcellular structures beginning in the 1950s and became the prime tool of anatomical research. About the same time, the use of X-ray diffraction for studying the structures of many types of molecules present in living things gave rise to the new subspecialty of molecular anatomy.

Scientific names for the parts and structures of the human body are usually in Latin; for example, the name musculus biceps brachii denotes the biceps muscle of the upper arm. Some such names were bequeathed to Europe by ancient Greek and Roman writers, and many more were coined by European anatomists from the 16th century on. Expanding medical knowledge meant the discovery of many bodily structures and tissues, but there was no uniformity of nomenclature, and thousands of new names were added as medical writers followed their own fancies, usually expressing them in a Latin form.

By the end of the 19th century the confusion caused by the enormous number of names had become intolerable. Medical dictionaries sometimes listed as many as 20 synonyms for one name, and more than 50,000 names were in use throughout Europe. In 1887 the German Anatomical Society undertook the task of standardizing the nomenclature, and, with the help of other national anatomical societies, a complete list of anatomical terms and names was approved in 1895 that reduced the 50,000 names to 5,528. This list, the Basle Nomina Anatomica, had to be subsequently expanded, and in 1955 the Sixth International Anatomical Congress at Paris approved a major revision of it known as the Paris Nomina Anatomica.

View original post here:

anatomy | biology | Britannica.com

Muscular System – Muscles of the Human Body

[Continued from above] . . . Muscular System Anatomy

Muscle Types There are three types of muscle tissue:Visceral, cardiac, and skeletal.

The cells of cardiac muscle tissue are striatedthat is, they appear to have light and dark stripes when viewed under a light microscope. The arrangement of protein fibers inside of the cells causes these light and dark bands. Striations indicate that a muscle cell is very strong, unlike visceral muscles.

The cells of cardiac muscle are branched X or Y shaped cells tightly connected together by special junctions called intercalated disks. Intercalated disks are made up of fingerlike projections from two neighboring cells that interlock and provide a strong bond between the cells. The branched structure and intercalated disks allow the muscle cells to resist high blood pressures and the strain of pumping blood throughout a lifetime. These features also help to spread electrochemical signals quickly from cell to cell so that the heart can beat as a unit.

Skeletal muscle cells form when many smaller progenitor cells lump themselves together to form long, straight, multinucleated fibers. Striated just like cardiac muscle, these skeletal muscle fibers are very strong. Skeletal muscle derives its name from the fact that these muscles always connect to the skeleton in at least one place.

Gross Anatomy of a Skeletal Muscle Most skeletal muscles are attached to two bones through tendons. Tendons are tough bands of dense regular connective tissue whose strong collagen fibers firmly attach muscles to bones. Tendons are under extreme stress when muscles pull on them, so they are very strong and are woven into the coverings of both muscles and bones.

Muscles move by shortening their length, pulling on tendons, and moving bones closer to each other. One of the bones is pulled towards the other bone, which remains stationary. The place on the stationary bone that is connected via tendons to the muscle is called the origin. The place on the moving bone that is connected to the muscle via tendons is called the insertion. The belly of the muscle is the fleshy part of the muscle in between the tendons that does the actual contraction.

Names of Skeletal Muscles Skeletal muscles are named based on many different factors, including their location, origin and insertion, number of origins, shape, size, direction, and function.

Groups Action in Skeletal Muscle Skeletal muscles rarely work by themselves to achieve movements in the body. More often they work in groups to produce precise movements. The muscle that produces any particular movement of the body is known as an agonist or prime mover. The agonist always pairs with an antagonist muscle that produces the opposite effect on the same bones. For example, the biceps brachii muscle flexes the arm at the elbow. As the antagonist for this motion, the triceps brachii muscle extends the arm at the elbow. When the triceps is extending the arm, the biceps would be considered the antagonist.

In addition to the agonist/antagonist pairing, other muscles work to support the movements of the agonist. Synergists are muscles that help to stabilize a movement and reduce extraneous movements. They are usually found in regions near the agonist and often connect to the same bones. Because skeletal muscles move the insertion closer to the immobile origin, fixator muscles assist in movement by holding the origin stable. If you lift something heavy with your arms, fixators in the trunk region hold your body upright and immobile so that you maintain your balance while lifting.

Skeletal Muscle Histology Skeletal muscle fibers differ dramatically from other tissues of the body due to their highly specialized functions. Many of the organelles that make up muscle fibers are unique to this type of cell.

The sarcolemma is the cell membrane of muscle fibers. The sarcolemma acts as a conductor for electrochemical signals that stimulate muscle cells. Connected to the sarcolemma are transverse tubules (T-tubules) that help carry these electrochemical signals into the middle of the muscle fiber. The sarcoplasmic reticulum serves as a storage facility for calcium ions (Ca2+) that are vital to muscle contraction. Mitochondria, the power houses of the cell, are abundant in muscle cells to break down sugars and provide energy in the form of ATP to active muscles. Most of the muscle fibers structure is made up of myofibrils, which are the contractile structures of the cell. Myofibrils are made up of many proteins fibers arranged into repeating subunits called sarcomeres. The sarcomere is the functional unit of muscle fibers. (See Macronutrients for more information about the roles of sugars and proteins.)

Sarcomere Structure Sarcomeres are made of two types of protein fibers: thick filaments and thin filaments.

Function of Muscle Tissue The main function of the muscular system is movement. Muscles are the only tissue in the body that has the ability to contract and therefore move the other parts of the body.

Related to the function of movement is the muscular systems second function: the maintenance of posture and body position. Muscles often contract to hold the body still or in a particular position rather than to cause movement. The muscles responsible for the bodys posture have the greatest endurance of all muscles in the bodythey hold up the body throughout the day without becoming tired.

Another function related to movement is the movement of substances inside the body. The cardiac and visceral muscles are primarily responsible for transporting substances like blood or food from one part of the body to another.

The final function of muscle tissue is the generation of body heat. As a result of the high metabolic rate of contracting muscle, our muscular system produces a great deal of waste heat. Many small muscle contractions within the body produce our natural body heat. When we exert ourselves more than normal, the extra muscle contractions lead to a rise in body temperature and eventually to sweating.

Skeletal Muscles as Levers Skeletal muscles work together with bones and joints to form lever systems. The muscle acts as the effort force; the joint acts as the fulcrum; the bone that the muscle moves acts as the lever; and the object being moved acts as the load.

There are three classes of levers, but the vast majority of the levers in the body are third class levers. A third class lever is a system in which the fulcrum is at the end of the lever and the effort is between the fulcrum and the load at the other end of the lever. The third class levers in the body serve to increase the distance moved by the load compared to the distance that the muscle contracts.

The tradeoff for this increase in distance is that the force required to move the load must be greater than the mass of the load. For example, the biceps brachia of the arm pulls on the radius of the forearm, causing flexion at the elbow joint in a third class lever system. A very slight change in the length of the biceps causes a much larger movement of the forearm and hand, but the force applied by the biceps must be higher than the load moved by the muscle.

Motor Units Nerve cells called motor neurons control the skeletal muscles. Each motor neuron controls several muscle cells in a group known as a motor unit. When a motor neuron receives a signal from the brain, it stimulates all of the muscles cells in its motor unit at the same time.

The size of motor units varies throughout the body, depending on the function of a muscle. Muscles that perform fine movementslike those of theeyes or fingershave very few muscle fibers in each motor unit to improve the precision of the brains control over these structures. Muscles that need a lot of strength to perform their functionlike leg or arm muscleshave many muscle cells in each motor unit. One of the ways that the body can control the strength of each muscle is by determining how many motor units to activate for a given function. This explains why the same muscles that are used to pick up a pencil are also used to pick up a bowling ball.

Contraction Cycle Muscles contract when stimulated by signals from their motor neurons. Motor neurons contact muscle cells at a point called the Neuromuscular Junction (NMJ). Motor neurons release neurotransmitter chemicals at the NMJ that bond to a special part of the sarcolemma known as the motor end plate. The motor end plate contains many ion channels that open in response to neurotransmitters and allow positive ions to enter the muscle fiber. The positive ions form an electrochemical gradient to form inside of the cell, which spreads throughout the sarcolemma and the T-tubules by opening even more ion channels.

When the positive ions reach the sarcoplasmic reticulum, Ca2+ ions are released and allowed to flow into the myofibrils. Ca2+ ions bind to troponin, which causes the troponin molecule to change shape and move nearby molecules of tropomyosin. Tropomyosin is moved away from myosin binding sites on actin molecules, allowing actin and myosin to bind together.

ATP molecules power myosin proteins in the thick filaments to bend and pull on actin molecules in the thin filaments. Myosin proteins act like oars on a boat, pulling the thin filaments closer to the center of a sarcomere. As the thin filaments are pulled together, the sarcomere shortens and contracts. Myofibrils of muscle fibers are made of many sarcomeres in a row, so that when all of the sarcomeres contract, the muscle cells shortens with a great force relative to its size.

Muscles continue contraction as long as they are stimulated by a neurotransmitter. When a motor neuron stops the release of the neurotransmitter, the process of contraction reverses itself. Calcium returns to the sarcoplasmic reticulum; troponin and tropomyosin return to their resting positions; and actin and myosin are prevented from binding. Sarcomeres return to their elongated resting state once the force of myosin pulling on actin has stopped.

Types of Muscle Contraction The strength of a muscles contraction can be controlled by two factors: the number of motor units involved in contraction and the amount of stimulus from the nervous system. A single nerve impulse of a motor neuron will cause a motor unit to contract briefly before relaxing. This small contraction is known as a twitch contraction. If the motor neuron provides several signals within a short period of time, the strength and duration of the muscle contraction increases. This phenomenon is known as temporal summation. If the motor neuron provides many nerve impulses in rapid succession, the muscle may enter the state of tetanus, or complete and lasting contraction. A muscle will remain in tetanus until the nerve signal rate slows or until the muscle becomes too fatigued to maintain the tetanus.

Not all muscle contractions produce movement. Isometric contractions are light contractions that increase the tension in the muscle without exerting enough force to move a body part. When people tense their bodies due to stress, they are performing an isometric contraction. Holding an object still and maintaining posture are also the result of isometric contractions. A contraction that does produce movement is an isotonic contraction. Isotonic contractions are required to develop muscle mass through weight lifting.

Muscle tone is a natural condition in which a skeletal muscle stays partially contracted at all times. Muscle tone provides a slight tension on the muscle to prevent damage to the muscle and joints from sudden movements, and also helps to maintain the bodys posture. All muscles maintain some amount of muscle tone at all times, unless the muscle has been disconnected from the central nervous system due to nerve damage.

Functional Types of Skeletal Muscle Fibers Skeletal muscle fibers can be divided into two types based on how they produce and use energy: Type I and Type II.

Muscle Metabolism and Fatigue Muscles get their energy from different sources depending on the situation that the muscle is working in. Muscles use aerobic respiration when we call on them to produce a low to moderate level of force. Aerobic respiration requires oxygen to produce about 36-38 ATP molecules from a molecule of glucose. Aerobic respiration is very efficient, and can continue as long as a muscle receives adequate amounts of oxygen and glucose to keep contracting. When we use muscles to produce a high level of force, they become so tightly contracted that oxygen carrying blood cannot enter the muscle. This condition causes the muscle to create energy using lactic acid fermentation, a form of anaerobic respiration. Anaerobic respiration is much less efficient than aerobic respirationonly 2 ATP are produced for each molecule of glucose. Muscles quickly tire as they burn through their energy reserves under anaerobic respiration.

To keep muscles working for a longer period of time, muscle fibers contain several important energy molecules. Myoglobin, a red pigment found in muscles, contains iron and stores oxygen in a manner similar to hemoglobin in the blood. The oxygen from myoglobin allows muscles to continue aerobic respiration in the absence of oxygen. Another chemical that helps to keep muscles working is creatine phosphate. Muscles use energy in the form of ATP, converting ATP to ADP to release its energy. Creatine phosphate donates its phosphate group to ADP to turn it back into ATP in order to provide extra energy to the muscle. Finally, muscle fibers contain energy-storing glycogen, a large macromolecule made of many linked glucoses. Active muscles break glucoses off of glycogen molecules to provide an internal fuel supply.

When muscles run out of energy during either aerobic or anaerobic respiration, the muscle quickly tires and loses its ability to contract. This condition is known as muscle fatigue. A fatigued muscle contains very little or no oxygen, glucose or ATP, but instead has many waste products from respiration, like lactic acid and ADP. The body must take in extra oxygen after exertion to replace the oxygen that was stored in myoglobin in the muscle fiber as well as to power the aerobic respiration that will rebuild the energy supplies inside of the cell. Oxygen debt (or recovery oxygen uptake) is the name for the extra oxygen that the body must take in to restore the muscle cells to their resting state. This explains why you feel out of breath for a few minutes after a strenuous activityyour body is trying to restore itself to its normal state.

Prepared by Tim Taylor, Anatomy and Physiology Instructor

Visit link:

Muscular System - Muscles of the Human Body

Gray, Henry. 1918. Anatomy of the Human Body

Select Search World Factbook Roget's Int'l Thesaurus Bartlett's Quotations Respectfully Quoted Fowler's King's English Strunk's Style Mencken's Language Cambridge History The King James Bible Oxford Shakespeare Gray's Anatomy Farmer's Cookbook Post's Etiquette Brewer's Phrase & Fable Bulfinch's Mythology Frazer's Golden Bough All Verse Anthologies Dickinson, E. Eliot, T.S. Frost, R. Hopkins, G.M. Keats, J. Lawrence, D.H. Masters, E.L. Sandburg, C. Sassoon, S. Whitman, W. Wordsworth, W. Yeats, W.B. All Nonfiction Harvard Classics American Essays Einstein's Relativity Grant, U.S. Roosevelt, T. Wells's History Presidential Inaugurals All Fiction Shelf of Fiction Ghost Stories Short Stories Shaw, G.B. Stein, G. Stevenson, R.L. Wells, H.G.

Original post:

Gray, Henry. 1918. Anatomy of the Human Body

Anatomy | Define Anatomy at Dictionary.com

Historical Examples

Psychology is therefore of equal importance with anatomy and acoustics as an element of Vocal Science.

Its use has practically been superseded by the study of anatomy.

Nobody e'd have blamed you any if you'd aimed at a vital section of his anatomy; but you let him off with little more'n a scratch.

His legs were the only part of his anatomy which seemed to him as long as his nose.

Until the end of the fifteenth century progress in anatomy was almost imperceptible.

British Dictionary definitions for anatomy Expand

the science concerned with the physical structure of animals and plants

the physical structure of an animal or plant or any of its parts

a book or treatise on this subject

dissection of an animal or plant

any detailed analysis: the anatomy of a crime

(informal) the human body

Word Origin

C14: from Latin anatomia, from Greek anatom, from anatemnein to cut up, from ana- + temnein to cut

Word Origin and History for anatomy Expand

late 14c., "study of the structure of living beings;" c.1400, "anatomical structures," from Old French anatomie, from Late Latin anatomia, from Greek anatomia, from anatome "dissection," from ana- "up" (see ana-) + temnein "to cut" (see tome). "Dissection" (1540s), "mummy" (1580s), and "skeleton" (1590s) were primary senses of this word in Shakespeare's day; meaning "the science of the structure of organized bodies" predominated from 17c. Often mistakenly divided as an atomy or a natomy.

anatomy in Medicine Expand

anatomy anatomy (-nt'-m) n.

The morphological structure of a plant or an animal or of any of its parts.

The science of the shape and structure of organisms and their parts.

Dissection of an animal to study the structure, position, and interrelation of its various parts.

A skeleton.

The human body.

anatomy in Science Expand

The structure of an organism or any of its parts.

The scientific study of the shape and structure of organisms and their parts.

anatomy in Culture Expand

The structure of an animal or plant; also, the study of this structure through techniques such as microscopic observation and dissection. (Compare morphology and physiology.)

See the article here:

Anatomy | Define Anatomy at Dictionary.com

Anatomy – Tips & Advice for Studying – About Biology …

Anatomy Artwork Showing Muscles. Credit: SCIEPRO/Getty Images

By Regina Bailey

Anatomy is the study of the structure of living organisms. This subdiscipline of biology can be further categorized into the study of large scale anatomical structures (gross anatomy) and the study of microscopic anatomical structures (microscopic anatomy). Human anatomy deals with anatomical structures of the human body, including cells, tissues, organs, and organ systems. Anatomy is always linked to physiology, the study of how biological processes function in living organisms.

Therefore it is not enough to be able to identify a structure, its function must also be understood.

The study of human anatomy gives us a better understanding of the structures of the body and how they work. When taking a basic anatomy course, your goal should be to learn and understand the structures and functions of the major body systems. It is important to remember that organ systems don't just exist as individual units. Each system depends on the others, either directly or indirectly, to keep the body functioning normally. It is also important to be able to identify the major cells, tissues, and organs being studied and to know how they function.

Studying anatomy involves lots of memorization. For instance, the human body contains 206 bones and over 600 muscles. Learning these structures requires time, effort, and good memorization skills. The following tips will help make learning and memorizing body structures easier.

The most important thing to understand when studying anatomy is the terminology. Using standard anatomical terminology ensures that anatomists have a common method of communicating to avoid confusion when identifying structures. Knowing anatomical directional terms and body planes for instance, enables you to describe the locations of structures in relation to other structures or locations in the body. Learning the common prefixes and suffixes used in anatomy and biology is also helpful. For example, if you are studying the brachiocephalic artery, you can figure out its function by knowing the affixes in the name. The affix brachio- refers to the upper arm and cephal refers to the head. If you have memorized that an artery is a blood vessel that carries blood away from the heart, you can determine that the brachiocephalic artery is a blood vessel that carries blood from the heart to the head and arm regions of the body.

Study aids are very useful when studying anatomy. Believe it or not, anatomy coloring books are one of the best ways to learn and memorize structures and their location. The Anatomy Coloring Book is a popular choice, but other coloring books work as well. Anatomy flash cards, like Netter's Anatomy Flash Cards and Mosby's Anatomy & Physiology Study and Review Cards are recommended as well. Flash cards are valuable for reviewing information and are not meant to be a substitute for anatomy texts. Acquiring a good complementary text, such as Netter's Atlas of Human Anatomy, is a must for higher level anatomy courses and those interested in or already attending medical school. These resources provide detailed illustrations and pictures of various anatomical structures.

I can't state it enough, to really make sure you comprehend the material, you must constantly review what you have learned. It is vital that you attend any and all anatomy review sessions given by your instructor. Be sure to always take practice quizzes before taking any test or quiz. Get together with a study group and quiz each other on the material. If you are taking an anatomy course with a lab, be sure that you prepare for what you are going to be studying before lab class. The main thing you want to avoid is falling behind. With the volume of information that is covered in most anatomy courses, it is important that you stay ahead and know what you need to know, before you need to know it.

For information on some of the tissues, organs and systems of the body, see:

Read the original post:

Anatomy - Tips & Advice for Studying - About Biology ...

Human Anatomy

What is Human Anatomy?

Human anatomy can be precisely defined as a complementary basic medical science, which deals with the scientific study of morphology of human body. In simpler words, human anatomy is the study of structure of human body.

There are two main levels of structure of human body (as well as every other thing): macroscopic level and microscopic level. For each of the two levels. there is a separate subdivision of anatomy. The one dealing with macroscopic level is known as gross anatomy and the other which deals with microscopic level is called microscopic anatomy or histology.

In gross anatomy, structure of human body is studied as seen by naked eye. There are two approaches for gross anatomy: Regional approach and Systemic approach.

Histology or microscopic anatomy is the study of the structure of various organs and tissues of human body under a microscope. The understanding of the ultra-structure helps understand the tissues and organs in a better way.

In addition to the main subdivisions of human anatomy described above, a third branch, called basic anatomy, is considered of significant importance. It explains the basic terms and definitions used in the study of gross as well as microscopic anatomy. Thus it provides an introduction to anatomy and tells how to study it.

MANanatomy.com provides a brief but effective explanation of all concepts of human anatomy. All the topics are explained in such a way that they are quick to learn and easy to remember. You will quickly find that MANanatomy.com is the best place to learn human anatomy online. Have a look at the quick navigation below:

Human Body Systems:

We spend a good amount of time to improve user experience on our website. We always welcome suggestions from our visitors because this is the best way to improve our service. Please spend a few seconds to provide us with your valuable recommendations.

Read more here:

Human Anatomy

Human Anatomy: Learn All About the Human Body at InnerBody.com

Explore the human body like never before! With hundreds of interactive anatomy pictures and descriptions of thousands of objects in the body, InnerBody.com will help you discover what you want to know about human anatomy, right here at your fingertips.

Join the millions of students, patients and inquisitive visitors start your anatomy exploration by clicking on any of the systems above.

Find out how to get the most out of InnerBody by watching this quick 2 minute intro video!

Continue reading here:

Human Anatomy: Learn All About the Human Body at InnerBody.com

Anatomy – definition of anatomy by The Free Dictionary

anatomy (-nt-m) n. pl. anatomies

1. The bodily structure of a plant or an animal or of any of its parts.

2. The science of the shape and structure of organisms and their parts.

3. A treatise on anatomic science.

4. Dissection of a plant or animal to study the structure, position, and interrelation of its various parts.

5. A skeleton.

6. The human body.

7. A detailed examination or analysis: the anatomy of a crime.

1. (Anatomy) the science concerned with the physical structure of animals and plants

2. (Anatomy) the physical structure of an animal or plant or any of its parts

3. (Anatomy) a book or treatise on this subject

4. (Anatomy) dissection of an animal or plant

5. any detailed analysis: the anatomy of a crime.

6. the human body

[C14: from Latin anatomia, from Greek anatom, from anatemnein to cut up, from ana- + temnein to cut]

n., pl. -mies.

1. the science dealing with the structure of animals and plants.

2. the structure of an animal or plant, or of any of its parts.

3. dissection of all or part of an animal or plant in order to study its structure.

4. Informal. the human body.

5. an analysis or minute examination.

1. The structure of an animal or a plant or any of its parts.

2. The scientific study of the shape and structure of living things.

anatomical (n-tm-kl) adjective

the study of the body and its parts. anatomist, n. anatomical, adj.

Obsolete, human anatomy.

the study concerned with the measurements of the proportions, size, and weight of the human body. anthropometrist, n. anthropometric, anthropometrical, adj.

Physiology, Rare. the labeling of the type of body structure by nonanthropometric means.

the anatomy of the human body. anthropotomist, n. anthropotomical, adj.

Physiology. the study of aponeuroses, membranes that can serve as muscle sheaths or as connectors between muscles and tendons.

the scientific description of the arterial system. arteriographic, arteriographical, adj.

a written work on the ligaments of the human body. desmographic, desmographical, adj.

the branch of anatomy and physiology that studies secretions and the secretory glands.

an abnormal physical condition characterized by extensive structural defects of the skeleton and by gross mental deficiency.

the description of the structure and function of the liver. hepatographic, hepatographical, adj.

the description of the structure and function of kidneys. heprographic, heprographical, adj.

a branch of anatomy that deals with the microscopic features of animal and plant tissues. Also called microscopical anatomy. histologist, n. histological, adj.

the scientific description of the larynx. laryngographic, laryngographical, adj.

histology.

the measurement of muscular phenomena, such as the velocity and intensity of muscular contractions. myographic, adj.

1. the branch of anatomy that studies muscles and musculature. 2. the muscular makeup of an animal or anatomical unit. myologic, adj.

the scientific description of the organs of plants and animals. organographist, n. organographic, organographical, adj.

the branch of anatomy that studies the skeleton and bones. osteologist, n. osteologie, osteological, adj.

the study of pelvic structure. pelycologic, pelycological, adj.

the scientific description of the pharynx. pharyngographic, pharyngographical, adj.

1. an account of the structure and function of the lungs. 2. the recording of the activity of the lungs during respiration. pneumograph, n. pneumographic, pneumographical, adj.

1. a person who dissects cadavers for the purpose of anatomical demonstration. 2. a person who performs autopsies. prosectorial, adj.

the branch of anatomy that studies the viscera.

an anatomical treatise on or description of the joints and ligaments of the body.

1. the anatomy of the ligaments of the body. 2. the science or study of ligaments.

the condition of having a series of similar parts with the same spatial orientation, e.g. the ribs. syntropic, adj.

the joining of two or more bones by muscle.

1. the dissection of animals other than man. 2. the anatomy of animals. zootomist, n. zootomic, zootomical, adj.

Study of the structure of organisms.

Follow this link:

Anatomy - definition of anatomy by The Free Dictionary