Wang, D. et al. Effects of salt stress on the antioxidant activity and malondialdehyde, solution protein, proline, and chlorophyll contents of three malus species (2022).
Grieve, I. C. Effects of parent material on the chemical composition of soil drainage waters. Geoderma 90, 4964 (1999).
Article ADS CAS Google Scholar
Said-Al-Ahl, H. A. H. & Polonica, E.O.-H. Medicinal and aromatic plants production under salt stress: A review. Herb. Pol. 57, 7287 (2011).
Google Scholar
Ambede, J. G., Netondo, G. W., Mwai, G. N. & Musyimi, D. M. NaCl salinity affects germination, growth, physiology, and biochemistry of bambara groundnut. Braz. J. Plant Physiol. 24, 151160 (2012).
Article CAS Google Scholar
Ma, Y., Wei, Z., Liu, J., Liu, X. & Liu, F. Growth and physiological responses of cotton plants to salt stress. J. Agron. Crop Sci. 207, 565576 (2021).
Article CAS Google Scholar
Flowers, T. J. & Yeo, A. R. Breeding for salinity resistance in crop plants: Where next?. Aust. J. Plant Physiol. 22, 875884 (1995).
Google Scholar
Tavakkoli, E., Paull, J., Rengasamy, P. & McDonald, G. K. Comparing genotypic variation in faba bean (Vicia faba L.) in response to salinity in hydroponic and field experiments. F. Crop. Res. 127, 99108 (2012).
Article Google Scholar
Slama, I., Abdelly, C., Bouchereau, A., Flowers, T. & Savour, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 115, 433447 (2015).
Article CAS PubMed PubMed Central Google Scholar
Akter, S. et al. Cysteines under ROS attack in plants: A proteomics view. J. Exp. Bot. 66, 29352944 (2015).
Article CAS PubMed Google Scholar
Eraslan, F., Inal, A., Pilbeam, D. J. & Gunes, A. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regul. 55, 207219 (2008).
Article CAS Google Scholar
De Azevedo Neto, A. D., Prisco, J. T., Enas-Filho, J., De Abreu, C. E. B. & Gomes-Filho, E. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ. Exp. Bot. 56, 8794 (2006).
Article Google Scholar
Ibrahimova, U. et al. Assessing the adaptive mechanisms of two bread wheat (Triticum aestivum L.) genotypes to salinity stress. Agronomy 11, 115 (2021).
Article Google Scholar
Singh, A., Shekhar, S., Marker, S. & Ramteke, P. W. Changes in morpho-physiological attributes in nine genotypes of linseed (Linum usitatissimum L.) under different level of salt (NaCl) stress. Vegetos 34, 647653 (2021).
Article Google Scholar
Yasir, T. A. et al. Exogenous sodium nitroprusside mitigates salt stress in lentil. Molecules 261, 2576 (2021).
Article Google Scholar
Sreenivasulu, N., Sopory, S. K. & Kavi-Kishor, P. B. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388, 113 (2007).
Article CAS PubMed Google Scholar
Mohammadi-Nejad, G., Nikbakht, E., Yousefi, K. & Farahbakhsh, H. Evaluation salinity tolerance of safflower (Carthamus tinctorius L.) genotypes at different vegetative growth stages pdf. Int. J. Plant Prod. 1(4), 105111 (2010).
Google Scholar
Ashrafi, E., Razmjoo, J. & Zahedi, M. Effect of salt stress on growth and ion accumulation of alfalfa (Medicago sativa L.) cultivars. J. Plant Nutr. 41, 818831 (2018).
Article CAS Google Scholar
Qadir, M., Ghafoor, A. & Murtaza, G. Amelioration strategies for saline soils: A review. L. Degrad. Dev. 11, 501521 (2000).
Article Google Scholar
Grieve, C. M., Grattan, S. R. & Maas, E. V. Plant salt tolerance: Chapter 13. In Agricultural Salinity. Assessment and Management (2nd Edition) 405459 (Springer, 2012).
Rumbaugh, M. D., Pendery, B. M. & James, D. W. Variation in the salinity tolerance of strawberry clover (Trifolium fragiferum L.). Plant Soil 153, 265271 (1993).
Article Google Scholar
Baghalian, K., Haghiry, A., Naghavi, M. R. & Mohammadi, A. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Sci. Hortic. Amster. 116, 437441 (2008).
Article CAS Google Scholar
Bhat, M. A., Ahmad, S., Aslam, J., Mujib, A. & Mahmooduzzfar, F. Salinity stress enhances production of solasodine in Solanum nigrum L.. Chem. Pharm. Bull. 56, 1721 (2008).
Article CAS Google Scholar
Rehman, R., Shehzad, M. R., Hanif, M. A. & Bhatti, J. A. Hollyhock. In Medicinal plants of South Asia 768 (Elsevier, 2019). https://doi.org/10.1016/B978-0-08-102659-5.00029-X.
Gutteridge, J. M. C. Aspects to consider when detecting and measuring lipid peroxidation. Free Radic. Res. 1, 173184 (1986).
CAS Google Scholar
Delauney, A. J. & Verma, D. P. S. Proline biosynthesis and osmoregulation in plants. Plant J. 4, 215223 (1993).
Article CAS Google Scholar
Netondo, G. W., Onyango, J. C. & Beck, E. Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity. Crop Sci. 44, 797805 (2004).
CAS Google Scholar
Deng, C., Zhang, G. & Pan, X. Photosynthetic responses in reed (Phragmites australis (CAV.) TRIN. ex Steud.) seedlings induced by different salinity-alkalinity and nitrogen levels. J. Agric. Sci. Technol. 13, 687699 (2011).
CAS Google Scholar
Bonales-Alatorre, E. et al. Differential activity of plasma and vacuolar membrane transporters contributes to genotypic differences in salinity tolerance in a halophyte species, Chenopodium quinoa. Int. J. Mol. Sci. 14, 92679285 (2013).
Article PubMed PubMed Central Google Scholar
Zhang, L. et al. Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 2014, 9 (2014).
Google Scholar
Shah, S. H., Houborg, R. & McCabe, M. F. Response of Chlorophyll, Carotenoid and SPAD-502 measurement to salinity and nutrient stress in wheat (Triticum aestivum L.). Agronomy 7, 121 (2017).
Article Google Scholar
Dawood, S., Austin, L. & Cristofanilli, M. Cancer stem cells: Implications for cancer therapy. Oncology Williston Park 2014, 28 (2014).
Google Scholar
Ma, R. H. & Tang, J. W. Remote sensing parameters acquisition and algorithm analysis of lake color. Shuikexue Jinzhan/Adv. Water Sci. 17, 720726 (2006).
Google Scholar
Gomes, L. C., Benedetto, G. D. & Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589598 (2011).
Article CAS PubMed PubMed Central Google Scholar
Ciccarelli, D., Bottega, S. & Span, C. Study of functional and physiological response of co-occurring shrub species to the Mediterranean climate. Saudi J. Biol. Sci. 26, 16681675 (2019).
Article PubMed Google Scholar
Gill, S. S. & Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48, 909930 (2010).
Article CAS PubMed Google Scholar
Van der Mescht, A., De Ronde, J. A. & Rossouw, F. T. Chlorophyll fluorescence and chlorophyll content as a measure of drought tolerance in potato. S. Afr. J. Sci. 95, 407412 (1999).
Google Scholar
Mahlooji, M., Seyed-Sharifi, R., Razmjoo, J., Sabzalian, M. R. & Sedghi, M. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes. Photosynthetica 56, 549556 (2018).
Article CAS Google Scholar
Kumar, K., Kumar, M., Kim, S. R., Ryu, H. & Cho, Y. G. Insights into genomics of salt stress response in rice. Rice 6, 115 (2013).
Article Google Scholar
Davey, M. W., Stals, E., Panis, B., Keulemans, J. & Swennen, R. L. High-throughput determination of malondialdehyde in plant tissues. Anal. Biochem. 347, 201207 (2005).
Article CAS PubMed Google Scholar
Demiral, T. & Trkan, I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ. Exp. Bot. 53, 247257 (2005).
Article CAS Google Scholar
Khan, F., Siddiqi, T. O., Mahmooduzzafar, D. & Ahmad, A. Morphological changes and antioxidant defence systems in soybean genotypes as affected by salt stress. J. Plant Interact. 4, 295306 (2009).
Article CAS Google Scholar
Nanjo, T. et al. Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 461, 205210 (1999).
Article CAS PubMed Google Scholar
Anjum, S. A. et al. Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J. Agron. Crop Sci. 197, 177185 (2011).
Article CAS Google Scholar
Huang, Y., Zhang, G., Wu, F., Chen, J. & Zhou, M. Differences in physiological traits among salt-stressed barley genotypes. Commun. Soil Sci. Plant Anal. 37, 557570 (2006).
Article CAS Google Scholar
Amirjani, M. R. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am. J. Plant Physiol. 5, 350360 (2010).
Article CAS Google Scholar
Smirnoff, N. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125, 2758. https://doi.org/10.1111/j.1469-8137.1993.tb03863.x (1993).
Article CAS PubMed Google Scholar
Wang, F. Z., Wang, Q., Bin-Kwon, S. Y., Kwak, S. S. & Su, W. A. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol. 162, 465472 (2005).
Article CAS PubMed Google Scholar
Jamil, M. et al. Salinity (NaCl) tolerance of Brassica species at germination and early seedling growth. Electron. J. Environ. Agric. Food Chem. 4, 970976 (2005).
CAS Google Scholar
Higbie, S. M. et al. Physiological response to salt (NaCl) stress in selected cultivated tetraploid cottons. Int. J. Agron. 2010, 112 (2010).
Article Google Scholar
Ahmed, S. Effect of soil salinity on the yield and yield components of mungbean. Pak. J. Bot. 41, 263268 (2009).
Google Scholar
Smulders, M. J. M. & de Klerk, G. J. Epigenetics in plant tissue culture. Plant Growth Regul. 63, 137146 (2011).
Article CAS Google Scholar
Hu, T., Jin, Y., Li, H., Amombo, E. & Fu, J. Stress memory induced transcriptional and metabolic changes of perennial ryegrass (Lolium perenne) in response to salt stress. Physiol. Plant. 156, 5469 (2016).
See the article here:
Differential responses of Hollyhock (Alcea rosea L.) varieties to salt stress in relation to physiological and biochemical ... - Nature.com