Justice, M. J. & Dhillon, P. Using the mouse to model human disease: increasing validity and reproducibility. Dis. Model. Mech. 9, 101103 (2016).
Article CAS PubMed PubMed Central Google Scholar
Perlman, R. L. Mouse models of human disease: an evolutionary perspective. Evol. Med. Public Health 2016, 170176 (2016).
PubMed PubMed Central Google Scholar
Ben-David, U., Beroukhim, R. & Golub, T. R. Genomic evolution of cancer models: perils and opportunities. Nat. Rev. Cancer 19, 97109 (2019).
Article CAS PubMed PubMed Central Google Scholar
Kersten, K., de Visser, K. E., van Miltenburg, M. H. & Jonkers, J. Genetically engineered mouse models in oncology research and cancer medicine. EMBO Mol. Med. 9, 137153 (2017).
Article CAS PubMed Google Scholar
Nadeau, J. H. & Auwerx, J. The virtuous cycle of human genetics and mouse models in drug discovery. Nat. Rev. Drug Discov. 18, 255272 (2019).
Article CAS PubMed Google Scholar
Meehan, T. F. et al. Disease model discovery from 3,328 gene knockouts by the International Mouse Phenotyping Consortium. Nat. Genet. 49, 12311238 (2017).
Article CAS PubMed PubMed Central Google Scholar
Gamazon, E. R., Zwinderman, A. H., Cox, N. J., Denys, D. & Derks, E. M. Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits. Nat. Genet. 51, 933940 (2019).
Article CAS PubMed PubMed Central Google Scholar
Mardinoglu, A., Uhlen, M. & Born, J. Broad views of non-alcoholic fatty liver disease. Cell Syst. 6, 79 (2018).
Article CAS PubMed Google Scholar
Neidlin, M., Dimitrakopoulou, S. & Alexopoulos, L. G. Multi-tissue network analysis for drug prioritization in knee osteoarthritis. Sci. Rep. 9, 112 (2019).
Article CAS Google Scholar
Zhuang, J. et al. Comparison of multi-tissue aging between human and mouse. Sci. Rep. 9, 19 (2019).
Article Google Scholar
Drawnel, F. M. et al. Molecular phenotyping combines molecular information, biological relevance, and patient data to improve productivity of early drug discovery. Cell Chem. Biol. 24, 624634.e3 (2017).
Article CAS PubMed Google Scholar
Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299310 (2018).
Article CAS PubMed PubMed Central Google Scholar
Baker, E. S. et al. Mass spectrometry for translational proteomics: progress and clinical implications. Genome Med. 4, 63 (2012).
Article CAS PubMed PubMed Central Google Scholar
Schubert O. T., et al. Quantitative proteomics: challenges and opportunities in basic and applied research | Kopernio. https://kopernio.com/viewer?doi=10.1038%2Fnprot.2017.040&token=WzIwMzcwMDUsIjEwLjEwMzgvbnByb3QuMjAxNy4wNDAiXQ.CjCfIPEraaJ57uSrmk6-FV12Ifw.
Vidova, V. & Spacil, Z. A review on mass spectrometry-based quantitative proteomics: targeted and data independent acquisition. Anal. Chim. Acta 964, 723 (2017).
Article CAS PubMed Google Scholar
Mendes, M. L. & Dittmar, G. Targeted proteomics on its way to discovery. Proteomics 22, 2100330 (2022).
Article CAS Google Scholar
Sobsey, C. A. et al. Targeted and untargeted proteomics approaches in biomarker development. Proteomics 20, 1900029 (2020).
Article CAS Google Scholar
Ebhardt, H. A., Root, A., Sander, C. & Aebersold, R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics 15, 31933208 (2015).
Article CAS PubMed PubMed Central Google Scholar
Meyer, J. G. & Schilling, B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev. Proteom. 14, 419429 (2017).
Article CAS Google Scholar
Zhu, Y., Aebersold, R., Mann, M. & Guo, T. SnapShot: clinical proteomics. Cell 184, 48404840.e1 (2021).
Article CAS PubMed Google Scholar
Do, M. et al. Clinical application of multiple reaction monitoring-mass spectrometry to human epidermal growth factor receptor 2 measurements as a potential diagnostic tool for breast cancer therapy. Clin. Chem. 66, 13391348 (2020).
Article PubMed Google Scholar
Son, M. et al. A clinically applicable 24-protein model for classifying risk subgroups in pancreatic ductal adenocarcinomas using multiple reaction monitoring-mass spectrometry. Clin. Cancer Res. 27, 33703382 (2021).
Article CAS PubMed Google Scholar
Illiano, A. et al. Multiple reaction monitoring tandem mass spectrometry approach for the identification of biological fluids at crime scene investigations. Anal. Chem. 90, 56275636 (2018).
Article CAS PubMed Google Scholar
Huang, J. et al. Quantitation of human milk proteins and their glycoforms using multiple reaction monitoring (MRM). Anal. Bioanal. Chem. 409, 589606 (2017).
Article CAS PubMed Google Scholar
Albrecht, S. et al. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control. Anal. Bioanal. Chem. 410, 31973207 (2018).
Article CAS PubMed Google Scholar
Wang, Z. et al. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: an observational multi-cohort study. eClinicalMedicine 49, 101495 (2022).
Ciccimaro, E. & Blair, I. A. Stable-isotope dilution LCMS for quantitative biomarker analysis. Bioanalysis 2, 311341 (2010).
Article CAS PubMed Google Scholar
Abbatiello, S. E. et al. Large-scale interlaboratory study to develop, analytically validate and apply highly multiplexed, quantitative peptide assays to measure cancer-relevant proteins in plasma. Mol. Cell. Proteom. 14, 23572374 (2015).
Article CAS Google Scholar
Arnold, S. L., Stevison, F. & Isoherranen, N. Impact of sample matrix on accuracy of peptide quantification: assessment of calibrator and internal standard selection and method validation. Anal. Chem. 88, 746753 (2016).
Article CAS PubMed Google Scholar
Hoofnagle, A. N. et al. Recommendations for the generation, quantification, storage and handling of peptides used for mass spectrometry-based assays. Clin. Chem. 62, 4869 (2016).
Article CAS PubMed PubMed Central Google Scholar
Chiva, C. & Sabid, E. Peptide selection for targeted protein quantitation. J. Proteome Res. 16, 13761380 (2017).
Article CAS PubMed Google Scholar
Mohammed, Y. et al. PeptidePicker: a scientific workflow with web interface for selecting appropriate peptides for targeted proteomics experiments. J. Proteom. 106, 151161 (2014).
Article CAS Google Scholar
Chiva, C. et al. Isotopologue multipoint calibration for proteomics biomarker quantification in clinical practice. Anal. Chem. 91, 49344938 (2019).
Article CAS PubMed Google Scholar
LeBlanc, A. et al. Multiplexed MRM-based protein quantitation using two different stable isotope-labeled peptide isotopologues for calibration. J. Proteome Res. 16, 25272536 (2017).
Article CAS PubMed Google Scholar
Mohammed, Y., Pan, J., Zhang, S., Han, J. & Borchers, C. H. ExSTA: external standard addition method for accurate high-throughput quantitation in targeted proteomics experiments. Proteomics Clin. Appl. 12, 1600180 (2018).
Article PubMed Google Scholar
Pino, L. K. et al. Calibration using a single-point external reference material harmonizes quantitative mass spectrometry proteomics data between platforms and laboratories. Anal. Chem. 90, 1311213117 (2018).
Article CAS PubMed PubMed Central Google Scholar
Whiteaker, J. R. et al. Using the CPTAC Assay Portal to identify and implement highly characterized targeted proteomics assays. Methods Mol. Biol. Clifton NJ 1410, 223236 (2016).
Article CAS Google Scholar
Parker, C. E. & Borchers, C. H. Mass spectrometry based biomarker discovery, verification, and validationquality assurance and control of protein biomarker assays. Mol. Oncol. 8, 840858 (2014).
Article CAS PubMed PubMed Central Google Scholar
Kennedy, J. J. et al. Demonstrating the feasibility of large-scale development of standardized assays to quantify human proteins. Nat. Methods 11, 149155 (2014).
Article CAS PubMed Google Scholar
Michaud, S. A. et al. Molecular phenotyping of laboratory mouse strains using 500 multiple reaction monitoring mass spectrometry plasma assays. Commun. Biol. 1, 19 (2018).
Article CAS Google Scholar
Whiteaker, J. R. et al. CPTAC Assay Portal: a repository of targeted proteomic assays. Nat. Methods 11, 703704 (2014).
Article CAS PubMed PubMed Central Google Scholar
Geiger, T. et al. Initial quantitative proteomic map of 28 mouse tissues using the SILAC mouse. Mol. Cell. Proteom. 12, 17091722 (2013).
Article CAS Google Scholar
Viode, A. et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 9, eadf9717 (2023).
Article CAS PubMed PubMed Central Google Scholar
Batth, T. S., Francavilla, C. & Olsen, J. V. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J. Proteome Res. 13, 61766186 (2014).
Article CAS PubMed Google Scholar
Faca, V. et al. Contribution of protein fractionation to depth of analysis of the serum and plasma proteomes. J. Proteome Res. 6, 35583565 (2007).
Article CAS PubMed Google Scholar
Taoufiq, Z. et al. Hidden proteome of synaptic vesicles in the mammalian brain. Proc. Natl Acad. Sci. 117, 3358633596 (2020).
Article CAS PubMed PubMed Central Google Scholar
Kaur, G. et al. Extending the depth of human plasma proteome coverage using simple fractionation techniques. J. Proteome Res. 20, 12611279 (2021).
Article CAS PubMed Google Scholar
Jankovska, E., Svitek, M., Holada, K. & Petrak, J. Affinity depletion versus relative protein enrichment: a side-by-side comparison of two major strategies for increasing human cerebrospinal fluid proteome coverage. Clin. Proteom. 16, 9 (2019).
Article Google Scholar
Wang, D. et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol. Syst. Biol. 15, e8503 (2019).
Article PubMed PubMed Central Google Scholar
Castillo, E. et al. Comparative profiling of cortical gene expression in Alzheimers disease patients and mouse models demonstrates a link between amyloidosis and neuroinflammation. Sci. Rep. 7, 17762 (2017).
Patir, A., Shih, B., McColl, B. W. & Freeman, T. C. A core transcriptional signature of human microglia: derivation and utility in describing region-dependent alterations associated with Alzheimers disease. Glia 67, 12401253 (2019).
Article PubMed Google Scholar
Anderson, N. L. & Anderson, N. G. The human plasma proteome: history, character, and diagnostic prospects *. Mol. Cell. Proteom. 1, 845867 (2002).
See the original post: