Nandagopal, N. & Elowitz, M. B. Synthetic biology: integrated gene circuits. Science 333, 12441248 (2011).
Article Google Scholar
Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101124 (2021).
Article Google Scholar
Wang, J., Li, Y. & Nie, G. Multifunctional biomolecule nanostructures for cancer therapy. Nat. Rev. Mater. 6, 766783 (2021).
Article Google Scholar
Segers, V. F. M. & Lee, R. T. Stem-cell therapy for cardiac disease. Nature 451, 937942 (2008).
Article Google Scholar
June, C. H., OConnor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 13611365 (2018).
Article Google Scholar
Maxmen, A. Living therapeutics: scientists genetically modify bacteria to deliver drugs. Nat. Med. 23, 57 (2017).
Article Google Scholar
NIH Human Microbiome Portfolio Analysis Team. A review of 10 years of human microbiome research activities at the US National Institutes of Health, Fiscal Years 2007-2016. Microbiome 7, 31 (2019).
Article Google Scholar
Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 5571 (2021).
Article Google Scholar
Sorbara, M. T. & Pamer, E. G. Microbiome-based therapeutics. Nat. Rev. Microbiol. 20, 365380 (2022).
Article Google Scholar
McNerney, M. P., Doiron, K. E., Ng, T. L., Chang, T. Z. & Silver, P. A. Theranostic cells: emerging clinical applications of synthetic biology. Nat. Rev. Genet. 22, 730746 (2021).
Article Google Scholar
Cubillos-Ruiz, A. et al. Engineering living therapeutics with synthetic biology. Nat. Rev. Drug Discov. 20, 941960 (2021).
Article Google Scholar
Ho, C. L. et al. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2, 2737 (2018).
Article Google Scholar
Isabella, V. M. et al. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nat. Biotechnol. 36, 857864 (2018). This article presents a live bacterial therapeutic engineered to metabolize phenylalanine for the treatment of phenylketonuria, currently in phase III clinical trials.
Article Google Scholar
Kurtz, C. B. et al. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Sci. Transl. Med. 11, eaau7975 (2019).
Article Google Scholar
Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727743 (2018).
Article Google Scholar
Sieow, B. F. L., Wun, K. S., Yong, W. P., Hwang, I. Y. & Chang, M. W. Tweak to treat: reprograming bacteria for cancer treatment. Trends Cancer Res. 7, 447464 (2021).
Article Google Scholar
Riglar, D. T. et al. Engineered bacteria can function in the mammalian gut long-term as live diagnostics of inflammation. Nat. Biotechnol. 35, 653658 (2017). This paper demonstrates the use of engineered bacteria as a diagnostic device for inflammation by detecting and recording exposure to a relevant biomarker in the gut.
Article Google Scholar
Daeffler, K. N. M. et al. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation. Mol. Syst. Biol. 13, 923 (2017).
Article Google Scholar
Hwang, I. Y. et al. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 8, 15028 (2017).
Article Google Scholar
Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10, eaao2586 (2018).
Article Google Scholar
Liu, Y. et al. Immunomimetic designer cells protect mice from MRSA infection. Cell 174, 259270.e11 (2018).
Article Google Scholar
Teixeira, A. P. & Fussenegger, M. Synthetic biology-inspired therapies for metabolic diseases. Curr. Opin. Biotechnol. 47, 5966 (2017).
Article Google Scholar
Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).
Article Google Scholar
Smith, K. A. Louis Pasteur, the father of immunology? Front. Immunol. 3, 68 (2012).
Article Google Scholar
Lindberg, A. A. The history of live bacterial vaccines. Dev. Biol. Stand. 84, 211219 (1995).
Google Scholar
Behr, M. A. BCG different strains, different vaccines? Lancet Infect. Dis. 2, 8692 (2002).
Article Google Scholar
Luca, S. & Mihaescu, T. History of BCG vaccine. Maedica 8, 5358 (2013).
Google Scholar
Germanier, R. & Fer, E. Isolation and characterization of Gal E mutant Ty 21a of Salmonella typhi: a candidate strain for a live, oral typhoid vaccine. J. Infect. Dis. 131, 553558 (1975).
Article Google Scholar
Germanier, R. & Frer, E. Characteristics of the attenuated oral vaccine strain S. typhi Ty 21a. Dev. Biol. Stand. 53, 37 (1983).
Google Scholar
Morales, A., Eidinger, D. & Bruce, A. W. Intracavitary Bacillus Calmette-Guerin in the treatment of superficial bladder tumors. 1976. J. Urol. 167, 891893 (2002).
Article Google Scholar
Pettenati, C. & Ingersoll, M. A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat. Rev. Urol. 15, 615625 (2018).
Article Google Scholar
Cabrera, A., Lepage, J. E., Sullivan, K. M. & Seed, S. M. Vaxchora: a single-dose oral cholera vaccine. Ann. Pharmacother. 51, 584589 (2017).
Article Google Scholar
Mosley, J. F. II, Smith, L. L., Brantley, P., Locke, D. & Como, M. Vaxchora: the first FDA-approved cholera vaccination in the United States. P T 42, 638640 (2017).
Google Scholar
Khanna, S. et al. Efficacy and safety of RBX2660 in PUNCH CD3, a phase III, randomized, double-blind, placebo-controlled trial with a Bayesian primary analysis for the prevention of recurrent Clostridioides difficile infection. Drugs 82, 15271538 (2022).
Article Google Scholar
No authors listed. FDA okays first human stool therapy.Nat. Biotechnol. 41, 5 (2023).
Article Google Scholar
Feuerstadt, P., Allegretti, J. R. & Khanna, S. Practical use of rebyota for the prevention of recurrent Clostridioides difficile infection. Am. J. Gastroenterol. 118, 13031306 (2023).
Article Google Scholar
Feuerstadt, P. et al. SER-109, an oral microbiome therapy for recurrent infection. N. Engl. J. Med. 386, 220229 (2022).
Article Google Scholar
Khanna, S. et al. SER-109: an oral investigational microbiome therapeutic for patients with recurrent infection (rCDI). Antibiotics 11, 1234 (2022).
Article Google Scholar
Sims, M. D. et al. Safety and tolerability of SER-109 as an investigational microbiome therapeutic in adults with recurrent Clostridioides difficile infection: a phase 3, open.-label, single-arm trial. JAMA Netw. Open 6, e2255758 (2023).
Article Google Scholar
Yu, Y. et al. Bacteria-driven bio-therapy: from fundamental studies to clinical trials. Nano Today 48, 101731 (2023).
Article Google Scholar
Huang, X. et al. Bacteria-based cancer immunotherapy. Adv. Sci. 8, 2003572 (2021).
Article Google Scholar
Van Amersfoort, E. S., Van Berkel, T. J. C. & Kuiper, J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. Rev. 16, 379414 (2003).
Article Google Scholar
Strebhardt, K. & Ullrich, A. Paul Ehrlichs magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473480 (2008).
Article Google Scholar
Dykhuizen, D. Species numbers in bacteria. Proc. Calif. Acad. Sci. 56, 6271 (2005).
Google Scholar
Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240273 (2009).
Article Google Scholar
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J. Biol. Chem. 274, 1740617409 (1999).
Article Google Scholar
Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 15 (1999).
Article Google Scholar
Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 20852088 (1998).
Article Google Scholar
Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 10991103 (2001).
Article Google Scholar
Green, E. R. & Mecsas, J. Bacterial secretion systems: an overview. Microbiol. Spectr. 4, 10.1128/microbiolspec.VMBF-0012-2015 (2016).
Costa, T. R. D. et al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol. 13, 343359 (2015).
See original here:
Bacterial therapies at the interface of synthetic biology and ... - Nature.com