Burk, R. et al. Neglected filoviruses. FEMS Microbiol. Rev. 40, 494519 (2016).
CAS PubMed PubMed Central Article Google Scholar
Jacob, S. T. et al. Ebola virus disease. Nat. Rev. Dis. Prim. 6, 131 (2020).
Article Google Scholar
Leroy, E. M. et al. Fruit bats as reservoirs of Ebola virus. Nature 438, 575576 (2005).
CAS PubMed Article Google Scholar
Mar Saz, A. et al. Investigating the zoonotic origin of the West African Ebola epidemic. EMBO Mol. Med. 7, 1723 (2015).
PubMed Article CAS Google Scholar
Goldstein, T. et al. The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat. Microbiol. 3, 10841089 (2018).
CAS PubMed PubMed Central Article Google Scholar
Amman, B. R. et al. Seasonal pulses of Marburg virus circulation in juvenile Rousettus aegyptiacus bats coincide with periods of increased risk of human infection. PLoS Pathog. 8, e1002877 (2012).
Swanepoel, R. et al. Studies of reservoir hosts for Marburg virus. Emerg. Infect. Dis. 13, 1847 (2007).
CAS PubMed PubMed Central Article Google Scholar
Towner, J. S. et al. Marburg virus infection detected in a common African bat. PloS one 2, e764 (2007).
PubMed PubMed Central Article CAS Google Scholar
Team WER. Ebola virus disease in West Africathe first 9 months of the epidemic and forward projections. New England Journal of Medicine 371, 1481-1495 (2014).
Hoenen, T., Groseth, A. & Feldmann, H. Therapeutic strategies to target the Ebola virus life cycle. Nat. Rev. Microbiol. 17, 593606 (2019).
CAS PubMed Article Google Scholar
Lee, J. E. & Saphire, E. O. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 4, 621635 (2009).
CAS PubMed PubMed Central Article Google Scholar
Mehedi, M. et al. A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J. Virol. 85, 54065414 (2011).
CAS PubMed PubMed Central Article Google Scholar
Volchkova, V. A., Feldmann, H., Klenk, H.-D. & Volchkov, V. E. The nonstructural small glycoprotein sGP of Ebola virus is secreted as an antiparallel-orientated homodimer. Virology 250, 408414 (1998).
CAS PubMed Article Google Scholar
Aleksandrowicz, P. et al. Ebola virus enters host cells by macropinocytosis and clathrin-mediated endocytosis. J. Infect. Dis. 204, S957S967 (2011).
CAS PubMed PubMed Central Article Google Scholar
Mulherkar, N., Raaben, M., de la Torre, J. C., Whelan, S. P. & Chandran, K. The Ebola virus glycoprotein mediates entry via a non-classical dynamin-dependent macropinocytic pathway. Virology 419, 7283 (2011).
CAS PubMed Article Google Scholar
Nanbo, A. et al. Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. 6, e1001121 (2010).
PubMed PubMed Central Article CAS Google Scholar
Saeed, M. F., Kolokoltsov, A. A., Albrecht, T. & Davey, R. A. Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 6, e1001110 (2010).
PubMed PubMed Central Article CAS Google Scholar
Gong, X. et al. Structural insights into the Niemann-Pick C1 (NPC1)-mediated cholesterol transfer and Ebola infection. Cell 165, 14671478 (2016).
CAS PubMed PubMed Central Article Google Scholar
Miller, E. H. et al. Ebola virus entry requires the hostprogrammed recognition of an intracellular receptor. EMBO J. 31, 19471960 (2012).
CAS PubMed PubMed Central Article Google Scholar
Wang, H. et al. Ebola viral glycoprotein bound to its endosomal receptor Niemann-Pick C1. Cell 164, 258268 (2016).
CAS PubMed PubMed Central Article Google Scholar
Saphire, E. O., Schendel, S. L., Gunn, B. M., Milligan, J. C. & Alter, G. Antibody-mediated protection against Ebola virus. Nat. Immunol. 19, 11691178 (2018).
CAS PubMed PubMed Central Article Google Scholar
Volchkov, V. E., Feldmann, H., Volchkova, V. A. & Klenk, H.-D. Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc. Natl Acad. Sci. 95, 57625767 (1998).
CAS PubMed PubMed Central Article Google Scholar
Sanchez, A. et al. Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J. Virol. 72, 64426447 (1998).
CAS PubMed PubMed Central Article Google Scholar
Ito, H., Watanabe, S., Sanchez, A., Whitt, M. A. & Kawaoka, Y. Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J. Virol. 73, 89078912 (1999).
CAS PubMed PubMed Central Article Google Scholar
Malashkevich, V. N. et al. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9- resolution. Proc. Natl Acad. Sci. 96, 26622667 (1999).
CAS PubMed PubMed Central Article Google Scholar
Weissenhorn, W., Carf, A., Lee, K.-H., Skehel, J. J. & Wiley, D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol. cell 2, 605616 (1998).
CAS PubMed Article Google Scholar
Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 68416844 (2002).
CAS PubMed PubMed Central Article Google Scholar
Lin, G. et al. Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J. Virol. 77, 13371346 (2003).
CAS PubMed PubMed Central Article Google Scholar
Simmons, G. et al. DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology 305, 115123 (2003).
CAS PubMed Article Google Scholar
Collar, A. L. et al. Comparison of N-and O-linked glycosylation patterns of ebolavirus glycoproteins. Virology 502, 3947 (2017).
CAS PubMed Article Google Scholar
Dowling, W. et al. Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of ebola virus GP DNA vaccines. J. Virol. 81, 18211837 (2007).
CAS PubMed Article Google Scholar
Iraqi, M. et al. N-Glycans mediate the ebola virus-GP1 shielding of ligands to immune receptors and immune evasion. Front. Cell. Infect. Microbiol. 10, 48 (2020).
CAS PubMed PubMed Central Article Google Scholar
Jeffers, S. A., Sanders, D. A. & Sanchez, A. Covalent modifications of the Ebola virus glycoprotein. J. Virol. 76, 1246312472 (2002).
CAS PubMed PubMed Central Article Google Scholar
Lennemann, N. J. et al. Comprehensive functional analysis of N-linked glycans on Ebola virus GP1. MBio 5, e0086200813 (2014).
PubMed PubMed Central Article CAS Google Scholar
Ritchie, G. et al. Identification of Nglycans from Ebola virus glycoproteins by matrixassisted laser desorption/ionisation timeofflight and negative ion electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom.: Int. J. Devoted Rapid Dissem. toMinute Res. Mass Spectrom. 24, 571585 (2010).
CAS Article Google Scholar
Wang, B. et al. Mechanistic understanding of N-glycosylation in Ebola virus glycoprotein maturation and function. J. Biol. Chem. 292, 58605870 (2017).
CAS PubMed PubMed Central Article Google Scholar
Lennemann, N. J., Walkner, M., Berkebile, A. R., Patel, N. & Maury, W. The role of conserved N-linked glycans on Ebola virus glycoprotein 2. J. Infect. Dis. 212, S204S209 (2015).
CAS PubMed PubMed Central Article Google Scholar
Furmanek, A. & Hofsteenge, J. Protein C-mannosylation: facts and questions. Acta Biochimica Polonica 47, 781789 (2000).
CAS PubMed Article Google Scholar
Julenius, K. NetCGlyc 1.0: prediction of mammalian C-mannosylation sites. Glycobiology 17, 868876 (2007).
CAS PubMed Article Google Scholar
Falzarano, D. et al. Ebola sGPthe first viral glycoprotein shown to be C-mannosylated. Virology 368, 8390 (2007).
CAS PubMed Article Google Scholar
Plewe, M. B. et al. Discovery of Adamantane Carboxamides as Ebola Virus Cell Entry and Glycoprotein Inhibitors. ACS medicinal Chem. Lett. 11, 11601167 (2020).
CAS Article Google Scholar
Ren, J., Zhao, Y., Fry, E. E. & Stuart, D. I. Target identification and mode of action of four chemically divergent drugs against ebolavirus infection. J. medicinal Chem. 61, 724733 (2018).
CAS Article Google Scholar
Shaikh, F. et al. Structure-based in silico screening identifies a potent ebolavirus inhibitor from a traditional Chinese medicine library. J. medicinal Chem. 62, 29282937 (2019).
CAS Article Google Scholar
Zhao, Y. et al. Structures of Ebola virus glycoprotein complexes with tricyclic antidepressant and antipsychotic drugs. J. medicinal Chem. 61, 49384945 (2018).
CAS Article Google Scholar
Zhao, Y. et al. Toremifene interacts with and destabilizes the Ebola virus glycoprotein. Nature 535, 169172 (2016).
CAS PubMed PubMed Central Article Google Scholar
Cohen-Dvashi, H. et al. Structural basis for a convergent immune response against Ebola Virus. Cell host microbe 27, 418427.e414 (2020).
CAS PubMed Article Google Scholar
Dias, J. M. et al. A shared structural solution for neutralizing ebolaviruses. Nat. Struct. Mol. Biol. 18, 14241427 (2011).
CAS PubMed PubMed Central Article Google Scholar
Ehrhardt, S. A. et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nat. Med. 25, 15891600 (2019).
CAS PubMed Article Google Scholar
King, L. B. et al. Cross-reactive neutralizing human survivor monoclonal antibody BDBV223 targets the ebolavirus stalk. Nat. Commun. 10, 18 (2019).
Article CAS Google Scholar
Milligan, J. C. et al. Asymmetric and non-stoichiometric glycoprotein recognition by two distinct antibodies results in broad protection against ebolaviruses. Cell 185, 9951007 (2022).
Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351, 13431346 (2016).
CAS PubMed PubMed Central Article Google Scholar
Murin, C. D. et al. Convergence of a common solution for broad ebolavirus neutralization by glycan cap-directed human antibodies. Cell Rep. 35, 108984 (2021).
Originally posted here:
Glycan shield of the ebolavirus envelope glycoprotein GP | Communications Biology - Nature.com