Category Archives: Cell Biology

Advances in Assisted Reproduction: What Can We Expect? – BioNews

11 October 2021

Digital Media and Content Specialist, International Livestock Research Institute

The UK Government recently announced its intention to extend the maximum storage limit, for frozen eggs, sperm and embryos, to 55 years across the board (see BioNews 1111). Sarah Norcross, director of the Progress Educational Trust (PET), invited the audience at PET's event 'Advances in Assisted Reproduction: What Can We Expect?' to consider where assisted reproductive technologies (ART) stood 55 years ago. The first IVF baby hadn't even been born. Norcross mused: 'Where will ART be 55 years from now?'

First speaker, Rod Mitchell, professor of developmental endocrinology at the University of Edinburgh, talked about current advances in ART for males. Patients who are unable to produce sperm don't have the option of freezing it for future use. Such patients include children who receive medical treatment that also damages their fertility, such as chemotherapy.

Professor Mitchell explained that we might instead preserve spermatogonial stem cells, as these are present in children as well as adults. This could be achieved by removing and freezing small portions of testicular tissue, where the stem cells are located. In the future, the sperm could be transplanted back into the testes, or used to produce mature sperm in the lab. Such tissue transplantation research is currently on the cusp of clinical development, having recently proved successful in primates.

Professor Mitchell called for clinicians to ensure good service for the so-called 'inbetweeners' young people who fall between the stage where only spermatogonial stem cells can be harvested, and the stage where mature sperm are present. There are also avenues of research, currently being pursued in animal studies, which could lead to ways of generating sperm that do not need to start from spermatogonial stem cells at all.

Second speaker, Evelyn Telfer, professor of reproductive biology at the University of Edinburgh, addressed advances in the maturation of human eggs in the lab, an area which has been pioneered by her research group. She put her group's research into context with a striking fact: a woman's full egg reserve is entirely formed before birth, but only 0.1 percent of those eggs will ever be ovulated. The rest are lost. This begs the question of whether it is possible to preserve any of the lost 99.9 percent.

In the 1990s, researchers at the University of Edinburgh developed the cryopreservation of ovarian tissue containing immature egg follicles. Since then, more than 130 babies have been born worldwide following transplantation of such ovarian tissue. However, Professor Telfer cautioned that this approach is not suitable for all patients for example, patients with ovarian cancer cannot risk having ovarian tissue removed and transplanted back into the body following treatment, in case the tissue contains malignant cells. This is why the alternative in vitro growth of eggs is needed.

Professor Telfer's group has shown that human eggs can be brought to full maturity using this approach, and she now intends to ensure that the resulting eggs are viable and safe for use. Studies of lab-grown sheep eggs will begin next year. Professor Telfer's group is also investigating how to adapt the maturation process with ovarian tissue obtained from children, from transgender patients, and from patients with chromosomal conditions such as Turner syndrome. Professor Telfer speculated that patients storing tissue now might benefit from future advances, such as the prospect of making mini-ovaries and new eggs from ovarian stem cells.

Third speaker, Adle Marston, professor of cell biology at the University of Edinburgh, talked about one of the major causes of infertility and miscarriage eggs that have an abnormal chromosome number, a phenomenon known as aneuploidy. Some 30-40 percent of eggs are thought to be aneuploid, in contrast to 2 percent of sperm. The likelihood of aneuploidy increases with age, and this contributes to a greater chance of miscarriage if women become pregnant in their 40s.

Aneuploidy occurs during meiosis, the process of cell division which creates eggs in biological females or sperm in males. Professor Marston outlined the process, explaining that immature eggs are 'held' in an early stage, each with an accompaniment of proteins to eventually help sort and divide the chromosomes. The deterioration of these 'sorting proteins' over a woman's lifetime may be one of the reasons why aneuploidy occurs. Professor Marston expects that research using embryos and gametes donated by ART patientswill help us understand more about aneuploidy, and ultimately that knowledge will be used to provide better choices for patient treatment.

The final speaker, David Albertini, professor of developmental cell biology at the Bedford Research Foundation, Massachusetts, gave a historical perspective on ART. Before 2010, many fundamental discoveries in fertility science started with research in animals, and new technologies moved steadily from bench to bedside. The past decade, however, has seen a steady rise in the prominence of 'add-ons' optional treatments which purport to improve ART outcomes.

Professor Albertini used this as an example of the science of human reproduction being drawn further into the realm of big business. He also discussed the advent of new frontiers and additional avenues of research, such as genome editing, which in turn give rise to new ethical challenges.

Professor Albertini said that wide-ranging ethical conversations were long overdue, drawing a link between the commercialisation of reproductive technologies, public mistrust of scientists, and fears of a dystopian future society. New technologies could potentially be used for the selection or even the enhancement of human embryos.

Fertility research is now looking at how to make viable gametes from different types of stem cells. Genome editing is set to become more precise. It is now possible to produce embryos containing mitochondrial DNA from a donor. Although this technology was developed to avoid the transmission of mitochondrial disease, some have sought to adapt it into a fertility treatment.

Professor Albertini concluded that ART have much to be proud of nearly ten million babies have born but argued that it is time to think about the future of this technology, and its potential both to help and to harm.

After the speakers had finished, there was no shortage of questions from the audience. Some attendees asked whether it was medically or ethically justifiable to have children at the far end of the 55-year storage limit. Professor Telfer said it was unlikely that people would choose to become parents at advanced ages, while Professor Mitchell reminded the audience that gametes or reproductive tissue from very young patients are sometimes being stored, in which case long storage periods are justified.

It was also asked whether science could help a woman with a low number of eggs generate new eggs. Professor Albertini said that while there research into this possibility, the results so far are not promising. It is more feasible to help immature egg follicles mature in the ovary than it is to produce entirely new eggs.

One attendee asked whether cryopreservation affects chromosome stability and meiosis. Professor Marston responded that we still lack an adequate understanding of what the 'normal' appearance of chromosomes in healthy eggs is. Professor Telfer agreed that the science surrounding egg freezing had not advanced as much as is sometimes assumed there are still many questions to be answered about different techniques, and how freezing affects development.

Further questions covered the low complication rate of egg and sperm collection processes, and what could be done in the future about premature menopause. Professor Albertini reflected that there are now options to preserve fertility that didn't exist 20 years previously, and added that while premature menopause is characterised by substantial and early loss of eggs, ovaries with low egg reserve can still be stimulated to produce eggs for freezing.

As the event drew to a close, a final question concerned whether there is a difference in fertility preservation approaches between the sexes. Professor Mitchell said that there wasn't, except in the sense that research into male fertility lags 20 years behind research into female fertility.

Throughout the event, the speakers struck a careful balance between honest caution and excitement about new possibilities.

PET is grateful to the Scottish Government for supporting this event. Our next online events will be:

More here:
Advances in Assisted Reproduction: What Can We Expect? - BioNews

Bone Therapeutics appoints Scientific Advisory Board for iMSC cell and gene therapy platform development – StreetInsider.com

Get instant alerts when news breaks on your stocks. Claim your 1-week free trial to StreetInsider Premium here.

Gosselies, Belgium, 12 October 2021, 7:00 am CEST BONE THERAPEUTICS (Euronext Brussels and Paris: BOTHE), the cell therapy company addressing unmet medical needs in orthopedics and other diseases, today announces it has appointed key experts to a Scientific Advisory Board (SAB).

Bone Therapeutics has appointed the members of this SAB specifically to provide additional expert guidance on the development of Bone Therapeutics novel, next generation induced pluripotent stem cell-derived mesenchymal stromal cell (iMSC) platform. This iMSC platform will be used to develop cell and gene therapy products that have strong anti-inflammatory and immunomodulatory properties, for the treatment of acute life-threatening unmet medical diseases.

Bone Therapeutics has appointed its SAB with world-recognized scientists and clinicians in the cell and gene therapy field. Each SAB member has been selected having demonstrated leadership roles in the clinical development of engineered cell and gene therapy for specific acute unmet medical conditions. These specific conditions include graft vs host disease, acute respiratory distress syndrome, sepsis, and trauma, as well as orthopedic conditions including osteoarthritis.

Bone Therapeutics is developing a next generation iMSC platform that has the potential to develop transformative cell and gene therapies for patients suffering from a range of life-threatening unmet medical diseases. Given the therapeutic potential of this platform and to deliver this platform to an operational state as quickly as possible, Bone Therapeutics has brought together a group of world-leading experts to support its development, said Tony Ting, PhD, Chief Scientific Officer, Bone Therapeutics. These thought leaders have been selected to bring a wealth of specific experience in the clinical development of cell and gene therapies. The input from this SAB will be critical as Bone Therapeutics develops its next-generation iMSC products for acute inflammatory diseases.

Given the therapeutic potential of the iMSC platform that Bone Therapeutics is developing, the invitation to chair and help form this scientific advisory board was too tempting to decline, said Massimo Dominici, MD, chair, Bone Therapeutics Scientific Advisory Board. The blend in expertise of this scientific advisory board will be able to provide key advice and consultancy to Bone Therapeutics and will make key contributions to ensure the development of the iMSC platform to reach patients of acute life-threatening unmet medical diseases as quickly as possible.

The Bone Therapeutics Scientific Advisory Board are as follows:

Massimo Dominici, MD, (Chair) - Full Professor of Medical Oncology and Director of the Division of Medical Oncology and of the Program of Cellular Therapy and Immuno-oncology at the University Hospital of Modena and Reggio Emilia (Italy). Also a member of the World Health Organization (WHO) Expert Advisory Panel on The International Pharmacopoeia and Pharmaceutical Preparations serving the INN Expert Group. Since 2016, the Director of the Residency School in Medical Oncology, since 2005, head of the Laboratory of Cellular Therapies at the University Hospital of Modena and Reggio Emilia (Italy). Scientific founder of the university start-up Rigenerand since 2009. Co-founder and coordinator of the Mirandola Science & Technology Park. Co-founder of the Forum of Italian Researcher on MSC (FIRST), board member of JACIE, WBMT and scientific advisor for the Italian Minister of Health. President of ISCT 2014-2016, Emeritus Member of ISCT and now Member of the ISCT Strategic Advisory Council. From June 2014 until May 2020 Chair of the ISCT Presidential taskforce on unproven cell and gene therapies.

Frank Barry, PhD, Professor of Cellular Therapy at the Regenerative Medicine Institute (REMEDI), National University of Ireland Galway and Visiting Scientist at the Schroeder Arthritis Institute in Toronto. He has made key contributions to the fields of tissue engineering and regenerative medicine by developing innovative and successful cellular therapies for tissue repair, joint injury and arthritic disease. By undertaking a large body of basic and translational research, he has contributed to the industrys current understanding of the phenotypic attributes of mesenchymal stromal cells that make them attractive candidates for advanced therapeutics. He has also contributed to the development of methods for automated, efficient and scalable cell expansion for GMP application and has been a leader in the development of clinical protocols for patient testing. He is the Coordinator of the ADIPOA2 clinical trial to test the efficacy of stromal cell delivery as a treatment for osteoarthritis. Frank Barry has received the Marshall Urist Award for excellence in tissue regeneration research from the Orthopaedic Research Society. Recently elected as a Member of the Royal Irish Academy.

Robert Deans, PhD, CSO at Synthego, a genome engineering company automating a new era of cell and gene therapeutics. Previously CTO at BlueRock Therapeutics, creating iPSC based allogeneic cell therapeutics by harnessing pluripotent stem cell biology and gene editing tools and founding CSO at Rubius Therapeutics, developing a platform of novel enucleated cell therapeutics based on genetic engineering and expansion of hematopoietic progenitors to mature red cells. Dr. Deans has more than 30 years of experience in adult stem cell therapeutics which includes HSC gene therapy and commercialization of progenitor cell therapeutics from bone marrow. Richard Maziarz, MD, has been involved in clinical investigation and translational research, for over 30 years, beginning with research and clinical training at the Dana-Farber Cancer Institute and the Brigham & Womens Hospital and continuing in 1991 when he moved to Oregon Health & Science University (OHSU) to develop a transplantation immunology program and served as the medical director of the adult OHSU stem cell transplant program since 1994. His research involved the immunology of transplantation or its complications, particularly in studying the immunopathophysiology of GVHD. He has served as principal investigator or co-investigator on over 100 clinical trials including multiple initiatives sponsored by numerous national transplant organizations including SWOG, CIBMTR, ISCT, NMDP and BMT CTN. Within the BMT CTN, he serves on the Steering committee, chaired the Regimen Related Toxicity Committee, was a member of the GVHD Committee and served as the principal investigator for the BMT CTN on the first multicenter, stem cell transplant trial for patients with advanced chronic lymphocytic leukemia (BMT CTN 0804).

Patricia Rocco, MD, PhD, Full Professor at the Federal University of Rio de Janeiro, and heads the Laboratory of Pulmonary Investigation. Elected Member of the National Academy of Medicine in Brazil and Brazilian Academy of Science. Past Vice-President of ISCT for the South and Central America regions. Authored and co-authored more than 380 peer-reviewed publications and 120 book chapters. She is the President of the Brazilian Society of Physiology (2021-2022). Her research activities focus mainly on the development of new therapies for lung diseases.

About Bone Therapeutics

Bone Therapeutics is a leading biotech company focused on the development of innovative products to address high unmet needs in orthopedics and other diseases. The Company has a diversified portfolio of cell therapies at different stages ranging from pre-clinical programs in immunomodulation to mid stage clinical development for orthopedic conditions, targeting markets with large unmet medical needs and limited innovation.

Bone Therapeutics core technology is based on its cutting-edge allogeneic cell and gene therapy platform with differentiated bone marrow sourced Mesenchymal Stromal Cells (MSCs) which can be stored at the point of use in the hospital. Currently in pre-clinical development, BT-20, the most recent product candidate from this technology, targets inflammatory conditions, while the leading investigational medicinal product, ALLOB, represents a unique, proprietary approach to bone regeneration, which turns undifferentiated stromal cells from healthy donors into bone-forming cells. These cells are produced via the Bone Therapeutics scalable manufacturing process. Following the CTA approval by regulatory authorities in Europe, the Company has initiated patient recruitment for the Phase IIb clinical trial with ALLOB in patients with difficult tibial fractures, using its optimized production process. ALLOB continues to be evaluated for other orthopedic indications including spinal fusion, osteotomy, maxillofacial and dental.

Bone Therapeutics cell therapy products are manufactured to the highest GMP (Good Manufacturing Practices) standards and are protected by a broad IP (Intellectual Property) portfolio covering ten patent families as well as knowhow. The Company is based in the BioPark in Gosselies, Belgium. Further information is available at http://www.bonetherapeutics.com.

For further information, please contact:

Bone Therapeutics SAMiguel Forte, MD, PhD, Chief Executive OfficerLieve Creten, Chief Financial Officer ad interimTel: +32 (0)71 12 10 00investorrelations@bonetherapeutics.com

For Belgian Media and Investor Enquiries:BepublicCatherine HaquenneTel: +32 (0)497 75 63 56catherine@bepublic.be

International Media Enquiries:Image Box CommunicationsNeil Hunter / Michelle BoxallTel: +44 (0)20 8943 4685neil.hunter@ibcomms.agency / michelle@ibcomms.agency

For French Media and Investor Enquiries:NewCap Investor Relations & Financial CommunicationsPierre Laurent, Louis-Victor Delouvrier and Arthur RouillTel: +33 (0)1 44 71 94 94bone@newcap.eu

Certain statements, beliefs and opinions in this press release are forward-looking, which reflect the Company or, as appropriate, the Company directors current expectations and projections about future events. By their nature, forward-looking statements involve a number of risks, uncertainties and assumptions that could cause actual results or events to differ materially from those expressed or implied by the forward-looking statements. These risks, uncertainties and assumptions could adversely affect the outcome and financial effects of the plans and events described herein. A multitude of factors including, but not limited to, changes in demand, competition and technology, can cause actual events, performance or results to differ significantly from any anticipated development. Forward looking statements contained in this press release regarding past trends or activities should not be taken as a representation that such trends or activities will continue in the future. As a result, the Company expressly disclaims any obligation or undertaking to release any update or revisions to any forward-looking statements in this press release as a result of any change in expectations or any change in events, conditions, assumptions or circumstances on which these forward-looking statements are based. Neither the Company nor its advisers or representatives nor any of its subsidiary undertakings or any such persons officers or employees guarantees that the assumptions underlying such forward-looking statements are free from errors nor does either accept any responsibility for the future accuracy of the forward-looking statements contained in this press release or the actual occurrence of the forecasted developments. You should not place undue reliance on forward-looking statements, which speak only as of the date of this press release.

Continue reading here:
Bone Therapeutics appoints Scientific Advisory Board for iMSC cell and gene therapy platform development - StreetInsider.com

USF invention addresses worldwide mask shortage and pollution concerns – University of South Florida

Technology created at the University of South Florida (USF) could be the key to safely reusing disposable face masks. Researchers have figured out a way to rapidly disinfect and electrostatically recharge N95 respirators, recovering their original filtration efficiency and protection capability against COVID-19 and other airborne diseases.

In their study published in Environmental Science & Technology, the team demonstrated their patent-pending sterilization technology could restore an N95 respirators original filtration efficiency of about 95 percent, even after 15 cycles of treatment. The technology fights coronavirus by using corona discharge ambient atmospheric pressure plasma. The technology works by simultaneously deactivating pathogens on a mask and restoring its electrostatic charges. It is non-thermal, meaning it doesnt require extra heating, and doesnt require chemicals or contact, making it safe and convenient to use. Its reusable, safer than ultraviolet (UV) radiation and is a low-power consumption technique only requiring 1.25 watts of electricity.

In addition to providing protection, corona discharge treatment can have a significant impact on the environment. According to a report released by the Hong Kong-based marine conservation organization OceansAsia, 1.56 billion face masks polluted the oceans in 2020 and will likely take more than 450 years to fully decompose. Instead of individuals using hundreds of masks per year, researchers say the technology will limit their consumption to dozens each year.

It is a reduction of 90 percent for each user. If we assume that 10 percent of the population all over the world takes advantage of corona discharge mask reuse technology, there will be four- five billion fewer masks disposed to the environment, said project lead Ying Zhong, assistant professor in the USF Department of Mechanical Engineering. It will reduce at least 24 million tons of plastic pollution and reduce the amount of chemicals used for mask disinfection and avoid their environmental impact.

Despite the challenging conditions of the pandemic, this was the most thrilling project that I have ever worked on. We wish our research advances the understanding of how corona discharge disinfection can be turned into products on the market as soon as possible, said co-project lead Libin Ye, assistant professor in the USF Department of Cell Biology, Molecular Biology and Microbiology.

The researchers are collaborating with a medical device design company to turn their prototypes into products available to hospitals and to the general public. The team is also working to develop handheld surface screening devices to sterilize homes, hospitals and other public areas, such as restaurants, schools and public transportation.

The technology is funded in part by a $167,568 RAPID grant from the National Science Foundation and a COVID-19 Rapid Response Research Grant from the USF Office of Research and Innovation.

Read this article:
USF invention addresses worldwide mask shortage and pollution concerns - University of South Florida

Building the World’s First University Cloud Lab – Technology Networks

Carnegie Mellon University (CMU) and Emerald Cloud Lab (ECL) recently announced their plans to build a cloud lab at the university's campus in Pittsburgh. A carbon copy of ECLs lab in San Francisco, the CMU Cloud Lab will enable scientists to perform experiments remotely and give them access to nearly 200 types of scientific instruments.To learn more about the CMU Cloud Lab, the motivation behind the project and the benefits it will bring, Technology Networks spoke to Rebecca Doerge, PhD, dean, Mellon College of Science, Carnegie Mellon University, and Toby Blackburn, head of business development and research, Emerald Cloud Lab.Anna MacDonald (AM): What was the motivation behind creating a cloud lab at CMU?Rebecca Doerge (RD): Carnegie Mellon University excels in the foundational sciences, robotics, machine learning and data science all fields that are at the core of the cloud lab and automated science. Were also in the midst of a future of science initiative, where we are devoting our time and resources to creating the future of science and educating the scientists of the future. It just made sense that we should be the ones to create the worlds first cloud lab at a university.AM: This will be the first cloud lab in an academic setting. Why do you think other universities have so far not adopted this approach?RD: CMU is being visionary and forward thinking in bringing a cloud lab to campus. ECLs Brian Frezza and DJ Kleinbaum are our alumni and they presented us with the chance to be a pioneer in this space. To us, the promise of the cloud lab for academic research and education was undeniable, and we jumped on it early.AM: What makes CMU well suited to host a cloud lab?RD: Carnegie Mellon has long been a world leader in the foundational sciences, computer science, robotics, machine learning and data science, all of which are at the foundation of the cloud lab. Were also known for being an institution where interdisciplinary collaboration is encouraged and thrives. Scientists at Carnegie Mellon often collaborate with computer scientists, engineers and statisticians to enhance their work using technology. The cloud lab is an extension of this.Carnegie Mellon is also committed to educating the next generation of scientists. Part of that is preparing them to use the latest methods and technologies. Giving our students access to a cloud lab will expose them to coding and automated science. It will also provide CMU students with greater access to state-of-the-art research equipment when they conduct their own research.

AM: Can you tell us more about the platform that the lab will be based on?Toby Blackburn (TB): Emerald Cloud Lab is the worlds first state-of-the-art pre-clinical biopharma R&D laboratory that runs experiments virtually from the cloud. Experiments ranging from basic chemistry to cell biology can be run using ECLs collection of instruments that encompass 190 different capabilities, all through one single platform, ECL Command Center.The Carnegie Mellon University Cloud Lab will be based on ECLs Global Cloud, a facility located in South San Francisco that is accessible to enterprise, start-up and academic customers. Command Center, the system used to interact with the lab and data, will function in the same way across both facilities, allowing for interoperability of experiment commands and data analysis functions.AM: Can you give us an overview of how the cloud lab will work? What equipment will be available and what experiments will be possible?TB: The cloud lab will work identically to the current ECLs Global Cloud but will be wholly dedicated to the experiments and research of the CMU community.Scientists will use Command Center to design their experiments, which are then performed in the Cloud Lab. Once an experiment is complete, users can also perform all data analysis, visualization and interpretation within Command Center.Equipment and capabilities of the CMU Cloud Lab are largely based on the ECL Global Cloud, but we are presently working with CMU to finalize the list of equipment and ensure that the facility will meet the needs of CMU faculty, staff and students.AM: In what ways do you expect the cloud lab to benefit faculty, students and the wider community?RD: The Carnegie Mellon University Cloud Lab will democratize science. Carnegie Mellon faculty and students, both undergraduate and graduate, will no longer be limited by the cost, availability and location of equipment. We also plan to open the Carnegie Mellon Cloud Lab to others in the research community, including high school students, researchers from smaller universities that may not have advanced research facilities and local life sciences startup companies.AM: How does developing and implementing a cloud lab in an academic setting compare to developing one in an industry setting?TB: Functionally, both Cloud Labs will work the same way, with the CMU facility leveraging all of the development and lessons learned from building the ECL. We plan to maintain this compatibility, allowing CMU to benefit from the further development arising from our pharma and biotech clients, and vice versa.One thing we are really excited about is the public nature of academic research. With the potential for research to be published with not only the raw data associated with the research, but also the experimental commands used to generate that raw data at the push of a button, the cloud lab can really change the landscape of scientific research and go a long way to address the reproducibility crisis.AM: Do you have any advice for other academic institutions thinking of developing a cloud lab?TB: Universities should be constantly looking for new and better ways to do research and provide education. A cloud lab is a great example. Over the last few years Carnegie Mellon faculty has used ECLs facilities for research and education. On the research front, weve found that using the cloud lab accelerates the pace of discovery and yields accurate, replicable and sharable data. On the education front, students are excited about the cloud lab. We believe that the cloud lab is part of the future of science and believe that it is important for academic institutions to begin to use the platform.

Additionally, having access to ECL facilities was a game-changer while many of us were working and learning remotely due to COVID-19. We were able to use the cloud lab to give students who were learning remotely a laboratory experience. And while many researchers had to pause their laboratory work, those who were working with the cloud lab could continue to do experiments.Rebecca Doerge and Toby Blackburn were speaking to Anna MacDonald, Science Writer for Technology Networks.

Go here to see the original:
Building the World's First University Cloud Lab - Technology Networks

Innovative Experiment Reveals the Complex Dynamics of Stem Cell Tethers and Slings – SciTechDaily

Research conducted at KAUST aims to improve how stem cells move in the body so that they can reach where they are needed following transplantation. Credit: 2021 KAUST; Anastasia Serin

Molecules move within elongated protrusions to help stabilize migrating cells inside the bloodstream.

An innovative experiment design shows, in real time and at the scale of a single molecule, how stem cells slow their rolling inside the circulatory system by growing long tethers that attach to the inner surfaces of blood vessels. The strategy could help researchers to improve stem cell transplantations and to find new treatments for metastasizing cancers.

Many cells in the human body travel through blood vessels from one organ to another to carry out specific functions. For example, immune cells migrate to inflamed tissue and cancer cells spread to new organs. Stem cells also travel to new locations to develop into different tissues. This stem cell homing, where cells migrate to their new place of residence, is also essential for successful bone marrow transplantation for treating various diseases, explains Satoshi Habuchi, who led the study.

Homing is a multistep process in which cells slowly roll over the inner lining of blood vessels, then adhere to the lining once they reach the site they are destined for, and finally transmigrate across the vessel wall into the tissue.

Scientists already knew that homing cells produce tethers containing ligands that can sense and bind to adhesion molecules on the blood vessel lining. Until now, however, scientists had not been able to directly visualize this rolling to understand exactly what happens at the molecular level.

Stem cell homing is a process whereby stem cells migrate through the circulatory system to arrive at the place where they are required in the human body. Credit: 2021 KAUST; Anastasia Serin

Satoshi, Merzaban and their teams were able to mimic cell rolling by using a microfluidic system. The tethering and rolling step of homing had previously been described as a simple binding between selectins on the endothelium and their ligands on stem cells, says Ph.D. student Bader Al Alwan. Our findings demonstrated that the initial step of homing is far more dynamic and complicated.

Part of the teams research is focused on understanding why cancer cancer cells outperform normal cells in their ability to migrate around the human body. Credit: 2021 KAUST; Anastasia Serin

The team found that individual microvilli on the surface of the homing cells elongate to form individual tethers. Ligands in the microvilli rapidly extend throughout the tethers so they can sniff out selectin in the blood-vessel lining. Once located, the ligands bind to the selectins, attaching the tether to the vessel lining. This helps the cell resist the full strength of the blood flow. As the blood flow exerts pressure on the top of the cell, it rolls forward, stretching the tether until it reaches a critical point when it breaks and flips forward to come in front of the cell. Now called a sling, it is used to slow down the cell so that it can look for the molecules that signal where its new home is.

When we started, we did not expect that cell morphology played such a critical role in stabilizing cell rolling, says Al Alwan. We were also surprised by the extent to which the morphology changes, with some tethers merging into multiple ones and others stretching to more than ten times the length of the cell.

The team, led by Satoshi (right), want to create a more precise map of the proteins that are present at each step of the homing and migration process. Credit: 2021 KAUST; Anastasia Serin

Our research is focused on understanding how various cells move in the body using adhesion systems. For example, one goal is to improve stem cell movement in the body so they can get where they are needed following transplantation or in other disease settings. We are also focused on understanding how and why cancer cells outperform normal cells in their ability to migrate so that we can develop methods to inhibit their metastasis. Using the sophisticated assays developed by Satoshi and his team, we also want to create a more precise map of the proteins that are present at each step of the homing and migration process to identify when and where they are important during migration, says bioscientist Jasmeen Merzaban, the co-principal investigator of the study.

Reference: Single-molecule imaging and microfluidic platform reveal molecular mechanisms of leukemic cell rolling by Bader Al Alwan, Karmen AbuZineh, Shuho Nozue, Aigerim Rakhmatulina, Mansour Aldehaiman, Asma S. Al-Amoodi, Maged F. Serag, Fajr A. Aleisa, Jasmeen S. Merzaban and Satoshi Habuchi, 14 July 2021, Communications Biology.DOI: 10.1038/s42003-021-02398-2

Follow this link:
Innovative Experiment Reveals the Complex Dynamics of Stem Cell Tethers and Slings - SciTechDaily

Lung Cancer Treatment Response Linked to Cancer-Associated Fibroblast Cell Subtypes – GenomeWeb

NEW YORK A team from the Massachusetts General Hospital, Novartis Institutes for BioMedical Research, and elsewhere has identified a handful of lung cancer-associated fibroblast subtypes with distinct clinical or biological features, including responses to tyrosine kinase inhibitor treatments.

"[W]e identify three major functional subtypes of [cancer-associated fibroblast (CAF)] that exhibit distinct impacts on treatments using EGFR and ALK TKIs," first author Haichuan Hu, an instructor in medicine with the MGH Cancer Center and Harvard Medical School, and his colleagues wrote in a study published in Cancer Cell on Thursday.

In the process, the team put together a CAF biobank that included samples from NSCLC cases with EGFR mutations or ALK fusions, offering clues to the fibroblast cell features that were shared and distinct in relation to the tumor cells.

"This large collection of CAFs allows us to adequately recapitulate a broad spectrum of NSCLC CAFs with diverse molecular features," the authors explained. "Here, we functionally characterize the landscape of NSCLC CAFs, reveal how they function differently, and demonstrate their potential clinical utilities."

For their analyses, the investigators first generated dozens of patient-derived fibroblast cultures using CAF cells isolated from non-small cell lung cancer biopsy samples. From there, they relied on a range of experiments including RNA sequencing, RT-qPCR, immune, and secretome assays; and phenotypic, functional, mouse model, and targeted treatment response profiling along with available single-cell and bulk RNA sequence data on NSCLC-associated fibroblasts to define three CAF subtypes with distinct biological and clinical characteristics.

In an email, Hu noted that such analyses may ultimately lead to personalized lung cancer treatment plans that take all the cell types in a lung tumor, including CAFs, into account.

"[W]e are able to demonstrate a link between an NSCLC patient's clinical response and the functional classification of CAFs from that patient's tumors," he and his co-authors wrote, "thus providing evidence supporting that this CAFs functional classification may have considerable value in future clinical management of cancer patients."

In the cluster of CAFs from subtype I, for example, the team saw higher-than-usual levels of hepatocyte growth factor (HGF) and fibroblast growth factor 7 (FGF7), along with protection of corresponding cancer cells against TKI treatment. Subtype II CAFs were also marked by enhanced FGF7 expression, but showed more moderate cancer protection than subtype I.

In those two subtypes, the researchers noted, combination treatments that include HGF-MET and/or FGFR pathway targeting may be effective, based on the new CAF data. On the other hand, CAFs in subtype III were linked to immune cell migration and tended to turn up in NSCLC patients with more promising clinical outcomes, hinting that immune-focused treatments may have promise in cases with these HGF-low, FGF7-low, and higher phospho-SMAD2 levels, which correspond to TGF-beta signaling.

"Apart from targeted therapy, we show that this CAF classification also has potential for evaluating patients in the context of immune therapy and may also aid in the research in other aspects of cancer biology," the authors wrote, adding that "[o]ur approach in exploring and exploiting fibroblast heterogeneity may also provide a valuable paradigm for these disciplines to further improve clinical patient management."

Link:
Lung Cancer Treatment Response Linked to Cancer-Associated Fibroblast Cell Subtypes - GenomeWeb

Scientists assemble a biological clock in a test tube to study how it works – Newswise

Newswise Daily cycles in virtually every aspect of our physiology are driven by biological clocks (also called circadian clocks) in our cells. The cyclical interactions of clock proteins keep the biological rhythms of life in tune with the daily cycle of night and day, and this happens not only in humans and other complex animals but even in simple, single-celled organisms such as cyanobacteria.

A team of scientists has now reconstituted the circadian clock of cyanobacteria in a test tube, enabling them to study rhythmic interactions of the clock proteins in real time and understand how these interactions enable the clock to exert control over gene expression. Researchers in three labs at UC Santa Cruz, UC Merced, and UC San Diego collaborated on the study,published October 8 inScience.

Reconstituting a complicated biological process like the circadian clock from the ground up has really helped us learn how the clock proteins work together and will enable a much deeper understanding of circadian rhythms, said Carrie Partch, professor of chemistry and biochemistry at UC Santa Cruz and a corresponding author of the study.

Partch noted that the molecular details of circadian clocks are remarkably similar from cyanobacteria to humans. Having a functioning clock that can be studied in the test tube (in vitro) instead of in living cells (in vivo) provides a powerful platform for exploring the clocks mechanisms and how it responds to changes. The team conducted experiments in living cells to confirm that their in vitro results are consistent with the way the clock operates in live cyanobacteria.

These results were so surprising because it is common to have results in vitro that are somewhat inconsistent with what is observed in vivo. The interior of live cells is highly complex, in stark contrast to the much simpler conditions in vitro, said Andy LiWang, professor of chemistry and biochemistry at UC Merced and a corresponding author of the paper.

The new study builds on previous work by Japanese researchers, who in 2005 reconstituted the cyanobacterial circadian oscillator, the basic 24-hour timekeeping loop of the clock. The oscillator consists of three related proteins: KaiA, KaiB, and KaiC. In living cells, signals from the oscillator are transmitted through other proteins to control the expression of genes in a circadian cycle.

The new in vitro clock includes, in addition to the oscillator proteins, two kinase proteins (SasA and CikA), whose activities are modified by interacting with the oscillator, as well as a DNA-binding protein (RpaA) and its DNA target.

SasA and CikA respectively activate and deactivate RpaA such that it rhythmically binds and unbinds DNA, LiWang explained. In cyanobacteria, this rhythmic binding and unbinding at over 100 different sites in their genome activates and deactivates the expression of numerous genes important to health and survival.

Using fluorescent labeling techniques, the researchers were able to track the interactions between all of these clock components as the whole system oscillates with a circadian rhythm for many days and even weeks. This system enabled the team to determine how SasA and CikA enhance the robustness of the oscillator, keeping it ticking under conditions in which the KaiABC proteins by themselves would stop oscillating.

The researchers also used the in vitro system to explore the genetic origins of clock disruption in an arrhythmic strain of cyanobacteria. They identified a single mutation in the gene for RpaA that reduces the proteins DNA-binding efficiency.

A single amino acid change in the transcription factor makes the cell lose the rhythm of gene expression, even though its clock is intact, said coauthor Susan Golden, director of the Center for Circadian Biology at UC San Diego, of which Partch and LiWang are also members.

The real beauty of this project is how the team drawn from three UC campuses came together to pool approaches toward answering how a cell can tell time, she added. The active collaboration extended well beyond the principal investigators, with the students and postdocs who were trained in different disciplines conferring among themselves to share genetics, structural biology, and biophysical data, explaining to one another the significance of their findings. The cross-discipline communication was as important to the success of the project as the impressive skills of the researchers.

The authors of the paper include first authors Archana Chavan and Joel Heisler at UC Merced and Jeffrey Swan at UC Santa Cruz, as well as coauthors Cigdem Sancar, Dustin Ernst, and Mingxu Fang at UC San Diego, and Joseph Palacios, Rebecca Spangler, Clive Bagshaw, Sarvind Tripathi, and Priya Crosby at UC Santa Cruz. This work was supported by the National Institutes of Health and the National Science Foundation.

View post:
Scientists assemble a biological clock in a test tube to study how it works - Newswise

AgTech NEXT 2021 Concludes with a Focus on the Impact of Climate Change on Food Security – Newswise

Newswise ST. LOUIS, MO, October 11, 2021 - Climate changes are occurring in every region of the world according to the recent UN report. The developing world has been disproportionately impacted and the effects of a changing climate are creating greater food and water insecurity and economic instability. With this in mind, AgTech NEXT 2021 CLIMATE CHANGE: Seeing Things Differently, will continue on November 18, at 1PM CST featuring a keynote address by Joe Cornelius, PhD, CEO, Gates Ag One, followed by a panel discussion with leaders of organizations working to advance new technologies to ensure food security in sub-Saharan Africa and South Asia. AgTech NEXT is complimentary to attend. To register, please visit agtechnext.org/register.

As CEO of Bill & Melinda Gates Agricultural Innovations (also known as Gates Ag One), Cornelius guides the organizations efforts to champion innovations and cultivate global networks that prioritize the needs of smallholder farmers.Cornelius began his career on a small, diversified family farm and has dedicated his professional life to improving the world through agricultural advancements. Most recently, he led efforts to strengthen agricultures adaptive capacity to climate change at the Bill & Melinda Gates Foundation, where he served as a director for its Global Growth and Opportunity Division. Cornelius has more than 30 years experience developing and launching new product inventions and has led breakthrough life-science research at multiple organizations including the Advanced Research Projects Agency in the U.S. Department of Energy. He holds a Ph.D. and M.Sci. in plant, soil and environmental science, as well as an MBA in technology entrepreneurship.

The people most at risk from the consequences of climate change are those in the least developed parts of the world. Thats why the priorities of smallholder famers in regions like sub-Saharan Africa and South Asia need to be at the top of our agenda, shared Dr. Cornelius. Its only when we understand and focus on their priorities that we can develop the tools needed for the world to effectively adapt.

Limiting the negative impact of climate change requires bold and creative action coupled with focused and sustained collaboration, especially in regions of the world that are most at risk, said Stephanie Regagnon, Executive Director, Innovation Partnerships at the Donald Danforth Plant Science Center. Gates Ag Ones presence in St. Louis amplifies the impact the Danforth Center and our local collaborators can have to address these urgent challenges.

NOVEMBER 18, 2021 - St. Louis, MO1:00-2:00 PM AGRICULTURE INNOVATION FOR CLIMATE ADAPTATION AND RESILIENCE

KEYNOTE: Joe Cornelius, PhD, CEO, Bill & Melinda Gates Agricultural Innovations, LLC

PANEL SESSION COLLABORATION AND CO-DEVELOPMENT FOR SUSTAINED IMPACTDr. Rose Gidado, PhD, Deputy Director, National Biotechnology Development Agency & Country Coordinator, Open Forum on Agriculture Biotechnology in Africa, Nigeria ChapterDr. Catherine Taracha, PhD, Head, Crop Biotechnology at the Kenya Agricultural and Livestock Research OrganizationDr. Pooja Bhatnagar-Mathur, PhD, Theme Leader-Cell, Molecular Biology and Genetic Engineering at the International Crops Research Institute for the Semi-arid Tropics in Hyderabad, India and Cluster of Activities Leader on Enabling Technologies, CGIAR Research Program on grain Legumes & Dryland CerealsDr. Don MacKenzie, PhD, Executive Director, Institute for International Crop Improvement, Donald Danforth Plant Science CenterMODERATOR: Joseph Opoku Gakpo, Journalist, Joy FM and Joy News TV, Ghana

Sponsored by KWS

Hosted by the Donald Danforth Plant Science Center, AgTech NEXT 2021 is presented by Aon, Bayer, Bryan Cave Leighton Paisner, Thompson Coburn LLP and Wells Fargo.

About the Donald Danforth Plant Science Center

Founded in 1998, the Donald Danforth Plant Science Center is a not-for-profit research institute with a mission to improve the human condition through plant science. Research, education and outreach aim to have impact at the nexus of food security and the environment, and position the St. Louis region as a world center for plant science. The Centers work is funded through competitive grants from many sources, including the National Institutes of Health, U.S. Department of Energy, National Science Foundation, and the Bill & Melinda Gates Foundation. Follow us on Twitter at@DanforthCenter.

Read the original here:
AgTech NEXT 2021 Concludes with a Focus on the Impact of Climate Change on Food Security - Newswise

Integrated spatial multiomics reveals fibroblast fate during tissue repair – pnas.org

Tissue fibrosis and its sequelae are associated with 45% of all mortality in the United States (1, 2). In the skin, wound healing is achieved through fibrosis and formation of a scar, which is composed of dense extracellular matrix. Scars are stiff, have poor vascularization, lack normal skin appendages, and accordingly are devoid of the skins native functionality. As a result, scars can result in lifelong disability secondary to disfigurement and dysfunction (3). Fibroblasts are the cells responsible for deposition of scar tissue. While several studies have characterized subtypes of fibroblasts involved in wound healing, the development of novel therapies that foster regeneration (rather than fibrosis) has remained limited because the origins, heterogeneity, and behavior of fibroblasts during tissue repair are not yet comprehensively understood.

Current knowledge of wound biology is largely derived from experiments performed in mice. However, translating cutaneous tissue repair in mice to humans is challenging due to species-specific anatomical differences. The panniculus carnosus is a subdermal muscle layer found throughout the body of mice that substantially contracts in response to wounding, enabling wound closure primarily through contracture of the mouses loose skin. In humans, an analog to this muscle exists only in the neck (the platysma muscle), the hand (palmaris brevis), and the scrotum (dartos muscle). Fibroblast heterogeneity has been previously explored in wound healing using mouse models in which large, unstented wounds (1.5-cm diameter) heal primarily by contraction, with only a small portion in the center healing through reepithelialization and deposition of connective tissue from fibroblasts (the primary mechanism of wound healing in humans) (4, 5). To recapitulate clinically relevant wound healing using mouse models, we utilize a stented wound model, which limits contraction of the panniculus carnosus and thereby mimics the wound healing kinetics of tight-skinned humans (6). Given that local tissue mechanics play a central role in scar formation (79), this model permits us to interrogate fibroblast mechanobiology in a more clinically relevant manner.

Recent advances in sequencing and cell capture technology have enabled the assessment of gene expression with reference to tissue organization using spatial transcriptomics. This approach has only been applied to a limited number of tissue types to date, primarily in the study of tumors, including prostate cancer (10), skin cancer (11, 12), and breast cancer (13), as well as bone marrow (14), joints (15), and brain tissue (16). However, to our knowledge, spatial transcriptomic analysis over time has yet to be applied to characterize wound healing. Moreover, the spatial and temporal distributions of the single-cell chromatin landscapes underlying gene expression have yet to be described.

Here, using transgenic mouse models, we assess the proliferation of local, tissue-resident fibroblast cells in wound healing. By establishing a microsurgical approach to independently isolate fibroblasts from spatially distinct regions within the wound, we interrogate Rainbow-labeled fibroblasts from critical timepoints during the course of wound closure. The Rainbow mouse model is a four-color reporter system that permits precise clonal analysis and lineage tracing. Using this model with phenotype-paired single-cell RNA and ATAC sequencing (scRNA-seq and scATAC-seq), we are able to define the spatial and temporal heterogeneity of wound fibroblasts with unique granularity. Using full-length, plate-based scRNA-seq, we assess the differentiation states of individual cells as they proliferate and migrate from the outer wound region inward (17). By disrupting this process using small molecule inhibition or genetic knockdown of focal adhesion kinase (FAK, Ptk2), we further elucidate the relationship between wound healing fibroblast activation and microenvironmental cues. By integrating our scRNA-seq and scATAC-seq analyses using the recently developed ArchR platform (18), we delineate interrelated changes in chromatin accessibility and gene expression driving wound closure and fibrosis and identify distinct wound fibroblast subpopulations. Furthermore, using CIBERSORTx deconvolution (19) of bulk RNA-seq data, we are able to categorize a putative fibroblast subpopulation-based response to local tissue injury. Finally, we introduce spatial multiomics, combining spatial transcriptomics with paired scRNA-seq and scATAC-seq datasets to impute spatial epigenomic properties and map chromatin accessibility states in the healing wound. Collectively, this work defines the spatial and temporal dynamics of the fibroblast response to injury and provides a multimodal -omics framework for future studies in tissue repair.

To explore the lineage dynamics of wound fibroblasts, we examined stented wound healing using the Rainbow (Rosa26VT2/GK3) mouse model (20). Rainbow mice contain a transgenic four-color reporter construct in the Rosa26 locus. Upon induction with Cre recombinase, the four colors irreversibly recombine such that all progeny cells will have the same color as their parent cells, thereby permitting stochastic lineage tracing and clonal analysis (Fig. 1A). We developed a technique for local induction using activated tamoxifen liposomes (LiTMX) in order to induce reporter recombination exclusively in tissue-resident cells (Fig. 1B) (21). Following injury, local skin fibroblasts were found to proliferate in a linear, polyclonal manner along the cross-sectional wound interface (Fig. 1 C and D), whereas fibroblasts in uninjured skin exhibited minimal clonality (Fig. 1 E and F). These data support the presence of local cells that are activated in response to injury and proliferate polyclonally to fill the wound gap.

Wounding triggers polyclonal proliferation of tissue-resident fibroblasts. (A) Schematic of the Rainbow mouse construct. (B) Schematic showing wound healing model using Rainbow mice with local Cre recombinase induction using 4-hydroxytamoxifen liposomes (LiTMX). (C) Schematic showing a Rainbow wound cross-section. Black dotted line highlights wound scar area; arrows indicate the direction of cellular proliferation during wound healing. Structures are as labeled. (D) Representative confocal image of POD 14 wound cross-sections from Actin-CreERT2::Rosa26VT2/GK3 mice induced locally with LiTMX at the time of wound creation. Thick white dotted lines highlight scar boundaries. Individual Rainbow cell clones are highlighted with thin colored dotted lines. Arrows indicate direction of wound healing. n > 5. (Scale bar, 50 m.) (E) Representative confocal images of unwounded skin from Actin-CreERT2::Rosa26VT2/GK3 mice induced locally with LiTMX. Thick white dotted lines highlight dermal boundaries. Individual Rainbow cell clones are highlighted with thin white dotted lines. n > 5. (Scale bar, 50 m.) (F) Rainbow clone counts in wounds versus uninjured skin. n = 5 per condition. *P < 0.05. (G) Schematic of dorsal, stented, excisional wound healing in the Rainbow mouse model (whole-mount view), with polyclonal proliferation of Rainbow fibroblasts from the outer wound edge inward across time from POD 2 (Left), to POD 7 (Middle), to POD 14 (Right). Black arrows highlight the apparent direction of proliferation. (H) Representative confocal imaging of a POD 14 whole-mounted wound harvested from Actin-CreERT2::Rosa26VT2/GK3 mice showing the polyclonal proliferation of wound fibroblasts radially toward the center of the wound (dark area at center). White arrows highlight the direction of cell proliferation; individual cell clones are highlighted with thin colored dotted lines. Bottom subpanels denote individual Rainbow color contributions to merged image. mCh, membrane (m)Cherry; mOr, mOrange; mCe, mCerulean; eG, eGFP. n > 5. (I) Schematics illustrating microdissection strategy for isolation of inner and outer wound regions (Top), followed by enzymatic separation of the dermal scar from the epi- and hypodermis (Bottom). (J) Heatmap displaying expression data for genes significantly different between POD 7 inner and outer region wound fibroblasts. Legend at Right displays fold change. (K) Gene Ontology (GO) enrichment analysis comparing gene expression data from POD 7 inner and outer region wound fibroblasts. Top shows GO biological processes up-regulated in inner region fibroblasts compared with outer region fibroblasts, while the Bottom shows the same for outer region fibroblasts compared with inner. Top 10 most significant gene sets are displayed for each condition.

Many cell surface and lineage markers have been associated with fibroblasts involved in wound healing, including Pdgfra, Engrailed-1 (En1), and CD26 (Dpp4) (2224). However, we and others have found expression of such markers to be variable throughout wound tissue (SI Appendix, Fig. S1A), suggesting spatial and functional heterogeneity among the fibroblasts that respond to injury. We asked whether there might be one or more fibroblasts activated following injury that could give rise to more diverse downstream fibroblast phenotypes. If so, we wondered whether such cells would be of tissue-resident origin, as suggested by previous studies (2527) (SI Appendix, Fig. S1B), or originate from peripheral circulation. To explore this, we employed transgenic parabiotic mice in conjunction with the splinted excisional wound healing model described above (6) (SI Appendix, Fig. S1C). eGFP donor mice were parabiosed to wild-type (C57BL/6J) mice (SI Appendix, Fig. S1D). A shared blood supply was established by 2 wk after surgery (SI Appendix, Fig. S1E), at which time wounds were made on the dorsum of each wild-type parabiont. Wounds were then harvested at postoperative day (POD) 7 (midway through healing) or POD 14 (when the wound has fully reepithelialized). While systemically infiltrating GFP+ cells were found in wild-type mouse wounds at both timepoints, the overwhelming majority (>80%) of GFP+ cells were also CD45+ and thus of hematopoietic (nonfibroblast) lineage (SI Appendix, Fig. S1F). These data further support the growing body of literature indicating that the fibroblasts responsible for wound healing are local, tissue-resident cells (2527).

Returning to the Rainbow mouse model, we developed a tissue clearing and whole-mount protocol to visualize wound healing biology with the Rainbow mouse (28). Using these methods in conjunction with a ubiquitous Actin-CreERT2 driver, we observed that cells were activated along the wound edge and proliferated inward in a distinct radial pattern (Fig. 1 G and H).

Based on the pattern of clonal proliferation extending from the outer wound edge inward, we developed a microsurgical technique to separately isolate the inner and outer components of the wound dermis (Fig. 1I). We isolated wound fibroblasts from these two regions at POD 7 (midpoint of healing) and unwounded skin for bulk RNA-seq evaluation. Clear differences in the gene expression profiles of inner versus outer wound fibroblasts were identified (Fig. 1 J and K and SI Appendix, Fig. S2 AC), including differences in mechanotransduction and cell cycle pathways. Furthermore, we observed that inner wound fibroblasts were transcriptionally more divergent from uninjured skin than were outer wound fibroblasts (SI Appendix, Fig. S2A). These findings support broad regional differences in the proliferation and activation status of fibroblasts in the healing wound; however, these methods are limited by the lack of granularity inherent in bulk transcriptional analysis.

We evaluated how well several recently published cell surface marker profiles, which define fibroblast subtypes largely based on tissue depth, tracked with the regional differences observed in our study (22). Among fluorescence activated cell sorting (FACS)-isolated, lineage-negative (29), Rainbow wound fibroblasts (Fig. 2A and SI Appendix, Fig. S3A), we found that most cells fell into the putative category of reticular fibroblasts (defined as DLK1+/SCA1) rather than papillary (CD26+/SCA1) or hypodermal (DLK1+//SCA1+) (SI Appendix, Fig. S3B). When we considered inner and outer wound fibroblasts separately, we found that distribution of fibroblast subtypes was not significantly different between these two groups (SI Appendix, Fig. S3C), suggesting that fibroblast subpopulations defined by selective marker profiles are not sufficient to delineate inner versus outer wound fibroblasts, though these can be readily distinguished based on their transcriptional programs even at the bulk tissue level.

Single-cell transcriptomic and chromatin accessibility analyses delineate mechanoresponsive fibroblast subpopulations. (A) Schematic illustrating single-cell (sc) isolation of Rainbow wound fibroblasts from inner and outer wound regions (highlighted with black dotted lines). For scRNA-seq, mCerulean+ fibroblasts were arbitrarily selected from the available Rainbow colors and used for the remaining experiments in this figure. (B) (Left) Uniform manifold approximation and projection (UMAP) embedding showing scRNA-seq data from mouse wound fibroblasts FACS isolated using a lineage-negative sort strategy (29) from POD 2, POD 7, and POD 14, digitally pooled and clustered in a manner agnostic to POD and inner versus outer wound regions. Four unique fibroblast clusters were identified (clusters 1 through 4). Dotted lines highlight individual cluster distributions. (Right) Recoloring of Left UMAP plot based on fibroblast tissue region: inner (black) versus outer (orange). (C) CytoTRACE analysis of scRNA-seq data using the UMAP embedding from F. Shading indicates inner (light gray) versus outer (dark gray) wound regions. (D) Box plots showing the predicted ordering by CytoTRACE for individual cells within the four scRNA-seq clusters. Gray arrow indicates direction of predicted differentiation from scRNA-seq cluster 1 to cluster 4 (which corresponds to outer-to-inner wound region expansion). P value was derived from two-sided Students t test. (E) scATAC-seq evaluation of Rainbow mouse wound fibroblasts isolated in parallel with our scRNA-seq experiments (SI Appendix, Methods), integrated using the ArchR toolkit with default Louvain parameters (18) to delineate four unique multimodal fibroblast clusters. (F) Heatmap of scATAC-seq motifs highlighting key gene loci differentially open or closed in putative fibroblast subpopulations. (G) Genome tracking plots showing scATAC-seq peaks for pseudobulk replicates generated for each cluster. Associations between the peaks with fibrosis and mechanotransduction-related genes (Peak2GeneLinks) are included at the Bottom of each plot. Pale orange shading highlights differentially expressed peaks across the scATAC clusters. All highlighted peaks demonstrated statistically significant differential expression in at least one pairwise comparison (false discovery rate [FDR] <0.1 and fold change [FC] 2).

We sought to better characterize wound fibroblast heterogeneity by examining individual fibroblast transcriptional programs at important functional timepoints in the canonical wound healing process: POD 2, inflammation; POD 7, granulation; and POD 14, complete reepithelialization (healed wound). We conducted plate-based scRNA-seq of lineage-negative fibroblasts isolated based on their expression of Rainbow clone colors from both inner and outer wound regions at each timepoint (Fig. 2A). Four transcriptionally defined fibroblast subpopulations were identified (Fig. 2B), with considerable differences in their distributions between wound regions.

Given our interest in understanding lineage trajectories in the context of wound healing, we assessed the relative differentiation states of these fibroblast populations using CytoTRACE, a computational tool that leverages transcriptional diversity to order cells based on developmental potential (Fig. 2C and SI Appendix, Fig. S4) (17). This analysis identified a lineage trajectory stemming from scRNA-cluster 1, which is characterized by elevated expression of fibroblast markers such as Pdgfra and primarily represented by cells from the outer wound region, extending to scRNA-cluster 4, which is primarily represented by cells from the inner wound (Fig. 2D). These findings suggest that fibroblasts may undergo differentiation as they proliferate from the outer wound inward.

To evaluate the epigenomic changes associated with fibroblast activation and lineage differentiation in wound healing, we conducted a series of scATAC-seq experiments in parallel with our scRNA-seq assays (SI Appendix, Fig. S5 A and B). We identified considerable heterogeneity in accessibility profiles among individual wound fibroblasts, which were clustered into six epigenomically distinct subgroups using the ArchR platform (18) (SI Appendix, Figs. S5 C and D and S6 AD). This partitioning was agnostic to the phenotype of cell origin (i.e., wound region or postoperative day), and all clusters included fibroblasts harvested from multiple timepoints and wound regions. We then performed cross-platform integration to link these scATAC data with our earlier scRNA data (18), resulting in four multimodal clusters characterized by both gene expression and chromatin accessibility profiles (Fig. 2 E and F and SI Appendix, Fig. S6E), which we refer to as ArchR-clusters 1 through 4.

We first examined the epigenomic landscape of the largest subpopulation, ArchR-cluster 1, which showed significantly elevated chromatin accessibility proximal to key fibrosis-related genes such as Col1a1, Acta2, and Pdgfra (Fig. 2G and SI Appendix, Figs. S7 A and B and S8), indicating that these cells are primed for their transcription. We also observed specific accessibility peaks and transcription factor footprinting in association with the FAK (Ptk2) locus and its downstream signaling elements such as Jun, suggesting that these fibroblasts may represent a mechanoresponsive, profibrotic subpopulation. ArchR-cluster 2 was associated with elevated Fn1 and Thbs1 accessibility peaks; ArchR-cluster 3 was characterized by increased accessibility at the Jak2 locus and decreased accessibility at the Fsp1 (S100a4) and Il6st loci; and ArchR-cluster 4 was characterized by increased accessibility at the Ptk2b, Jak1, and Jak3 loci.

In addition to specific peak and motif evaluation, we also employed clusterwide enrichment analysis using the Genomics Regions Enrichment of Annotations Tool (GREAT) (30) (SI Appendix, Fig. S9A). We found significant enrichment for increased fibroblast migration, focal adhesion, and FAK-pathway signaling response elements in ArchR-cluster 1. Furthermore, pseudotime analysis of these integrated scRNAATAC data demonstrated an epigenomic progression from the putatively least-differentiated ArchR-cluster 1 to the remaining cell populations that was driven by mechanical signaling elements (SI Appendix, Fig. S9B).

Based on these findings, we provisionally characterized each subpopulation according to its putative role in the wound healing process: mechanofibrotic (ArchR-cluster 1), activated-responder (ArchR-cluster 2), remodeling (ArchR-cluster 3), and proliferator (ArchR-cluster 4) fibroblasts.

Our laboratory has previously shown that local tissue mechanics are crucial in guiding the response to healing after injury (31), and mechanotransduction signaling pathway elements were found to delineate fibroblast subpopulations in our scRNA and scATAC wound data. To further interrogate the role of local tissue mechanics in wound biology, we applied a small molecule FAK inhibitor (FAKi) to disrupt mechanosensation in stented mouse wounds (SI Appendix, Fig. S10A). Consistent with prior work, we found that FAKi-treated wounds healed at the same rate as untreated wounds (SI Appendix, Fig. S10 B and C) but resulted in significantly smaller and thinner scars composed of less-dense matrix tissue (SI Appendix, Fig. S10 D and E) (32).

To validate our FAKi results, we conducted additional wound healing experiments using Actin-CreERT2::Rosa26VT2/GK3::Ptk2fl/+ and Actin-CreERT2::Rosa26VT2/GK3::Ptk2fl/fl (heterozygous Ptk2fl/+] and homozygous [Ptk2fl/fl] knockout) mice, with local LiTMX induction at the time of wounding (SI Appendix, Fig. S10 AC). We found that these mouse wounds also exhibited fewer scar-like patterns of connective tissue (SI Appendix, Fig. S10E). To further explore these differences, we employed an automated feature extraction algorithm (24) to quantify ultrastructure characteristics of wound tissue sections, which demonstrated that FAKi-treated wound specimens were more similar to unwounded skin than to vehicle-control wounds, including for both mature and immature collagen fiber intensities (SI Appendix, Fig. S10F). Taken together, these findings corroborate that when mechanotransduction is disrupted, wounds heal with thinner scars and connective tissue structure that is more similar to that of unwounded skin.

To understand the transcriptional changes associated with modulation of mechanotransduction in wound healing, we conducted additional RNA-seq experiments comparing fibroblasts isolated from inner and outer regions of FAKi-treated and control wounds. We observed significant changes in the transcriptional programs of FAKi-treated cells and found that regional differences between inner and outer wound fibroblasts were dampened in wounds following FAK inhibition (SI Appendix, Fig. S11 A and B). These results suggest that local tissue mechanics contribute to transcriptional differences between inner and outer wound regions. We found that wound healing fibroblasts showed down-regulation of mechanotransduction- and fibrosis-related pathways with FAKi treatment (SI Appendix, Fig. S11C). We also found that when mechanosignaling was blocked in Rainbow mice using FAKi, or in Ptk2fl/+ or Ptk2fl/fl mice, the linear polyclonal proliferation of fibroblasts that was previously appreciated (Fig. 1H) was disrupted (Fig. 3 AC), with smaller and less ordered Rainbow fibroblast clones.

Clonal proliferation of injury-responsive fibroblasts is dependent on mechanotransduction signaling. (A) Representative confocal images of sectioned Rainbow mouse wound specimens treated with FAKi (Second), FAKfl/+ (Third), or FAKfl/fl (Bottom) compared with vehicle control (Top). Imaris rendering in second column of images highlights individual Rainbow clones. Dermal wound area highlighted with thick white dotted line. n = 5. (Scale bars, 25 m.) (B) Quantitation of average clone size based on Imaris rendering. (C) Wedge sections of representative whole-mount confocal images of Rainbow wound specimens embedded within surrounding wound schematics for vehicle control (Top), FAKi-treated (Second), FAKfl/+ (Third), and FAKfl/fl (Bottom) samples. Corresponding vector analyses are provided to the Right of each subpanel. (D) Schematic illustrating our approach to deconvolve bulk RNA-seq data using our multimodal scRNAATAC construct. Transcriptionally defined cluster labels from scRNA-seq analysis were projected onto the scATAC-seq manifold using an anchor transferbased approach in ArchR as previously described (18) (Left column) to construct four multimodal fibroblast subpopulations. Putative names were assigned to these ArchR-clusters based on integrated functional and temporospatial characteristics. Feature and peak plots, above and below, for FAK (Ptk2) are provided for illustrative purposes (Center column). Deconvolution of bulk RNA-seq specimens representing wound fibroblasts treated with FAKi versus vehicle control (Right column) was then performed using CIBRERSORTx (19) (SI Appendix, Methods). Wound schematics (with silicone ring around the outside, and outer and inner regions indicated) are provided to represent CIBRERSORTx output identifying changes in the percentages of ArchR-cluster 1 (mechanofibrotic) cells in bulk samples over time and with/without FAKi treatment (shown in green). Parallel schematic of corresponding changes in other ArchR-clusters are provided in yellow.

We applied the deconvolution tool CIBERSORTx (19) to estimate the abundance of our four scRNAATAC populations (ArchR-clusters 1 through 4) within bulk RNA-seq data for fibroblasts isolated from POD 7 and POD 14 wounds with or without FAKi treatment (Fig. 3D). We found that the majority of cell estimates across all specimens were attributed to mechanofibrotic ArchR-cluster 1, consistent with its prominent representation in both our scRNA-seq and scATAC-seq datasets. The predicted prevalence of these cells was highest at POD 7 and decreased by POD 14. FAK inhibition resulted in decreased representation of ArchR-cluster 1 fibroblasts at POD 14 for both inner and outer wound samples (compared to control wounds at POD 14), further supporting the mechanosensitivity of the putative mechanofibrotic ArchR-cluster 1 subpopulation.

To further explore the significance of fibroblast heterogeneity in healing wounds, we applied the recently developed 10 Genomics Visium platform to analyze gene expression while retaining tissue spatial information. We optimized and validated a protocol to enable highly reproducible Visium spatial transcriptomic analysis of skin and wounds across the healing process (SI Appendix, Methods). We then conducted spatial transcriptomic analysis on tissue from our stented Rainbow mouse wound healing model at POD 2, 7, and 14, as well as uninjured skin (Fig. 4A).

Spatial transcriptomics applied to wound healing and tracking of fibroblast subpopulations over time and space. (A) Schematic for generating spatial transcriptomics data from splinted excisional wounds using the 10 Genomics Visium protocol. Fresh Rainbow mouse wound tissue was harvested, flash frozen, embedded in optimal cutting temperature (OCT), and then sections were taken representing the complete wound radius. H&E staining and tissue section imaging were completed as described in the Visium protocol (SI Appendix, Methods). Each spot captures mRNA from 1 to 10 individual cells at that tissue location. (B) Delineation of scar layers based on underlying tissue histology at each timepoint (Top row), and UMAP plot showing that the three scar layers can easily be distinguished by their transcriptional programs, even independent of spatial information. (C) (i) Schematic of classic stages of wound healing evaluated at POD 2, 7, and 14 relative to uninjured skin. (ii) Keratinocyte activity as measured through expression of the Krt6b gene. (iii) Fibroblast activity as measured through expression of the Pdgfra gene. (iv) Immune cell activity as measured through expression of the Msr1 gene. (D) Anchor-based integration of scRNA-seq populations (defined in Fig. 2B) with Visium gene expression to project partial membership within each spot across all timepoints. These populations exhibit strong spatial preferences within the wound.

The epidermal, dermal, and hypodermal layers of the healing wounds were easily delineated histologically and also found to cluster independently based on transcriptional programs (Fig. 4B). Looking at individual genes for prominent wound healing cell types (Fig. 4 C, i), we found clear delineation of keratinocytes in the epidermis based on Krt6b expression (as well as other keratinocyte-specific genes), allowing us to examine reepithelialization over space and time at the transcriptional level (Fig. 4 C, ii). Similarly, fibroblast activity was evaluated using characteristic genes such as Pdgfra, which were most prominent in the dermis and most active at POD 14 (Fig. 4 C, iii). Likewise, by examining activated macrophage markers like Msr1, we could monitor these immune cells throughout our dataset and found that they were very prominent in the proud flesh at the center of the wound at POD 7 (Fig. 4 C, iv).

One challenge inherent in current spatial transcriptomic platforms such as Visium is that each spot (i.e., discrete spatial subregion from which transcripts are sequenced) can capture gene expression information from more than one cell (1 to 10 cells, characteristically). In a complex tissue such as a healing wound, this often includes cells of different types, particularly within the dermis where fibroblasts, multiple types of immune cells, and nascent blood vessels can be found. As such, to understand our spatial transcriptomics results in the context of our scRNA and scATAC fibroblast data, we needed to account for the contributions of nonfibroblast cells from each Visium spot. This was achieved by first estimating the number of each specific cell type present within individual spots based on the associated histological staining (SI Appendix, Figs. S12 AD and S13). Cell counting was followed by random sampling in a Monte Carlo fashion to subtract out potential contributions from nonfibroblast cells, generating a distribution of 10,000 inferred fibroblast transcriptomes for each Visium spot. These were propagated forward for anchor-based integration to generate and pool spatially overlaid partial memberships for each of our four scRNA-clusters (Fig. 4D).

We found that the predicted spatial distributions for our scRNA-seq clusters were largely congruent with the transcriptional differences observed earlier between inner and outer cells using our microdissection approach (e.g., fibroblasts belonging to the mechanofibrotic cluster became more prominent over time, expanding from the outer to inner wound regions to fill the scar). Upon further examining transcriptional programming relative to tissue depth, we observed clear spatial distinctions between the apical and basal regions of the dermis as early as POD 7 and most prominently at POD 14 (SI Appendix, Figs. S14 AF and S15 A and B). For example, the MMP inhibitor Timp1 is expressed by fibroblasts in the basal dermis, while Thbs2, which mediates cellmatrix interactions, is primarily expressed in the more apical scar region.

To assess the relative differentiation states of fibroblasts in this system, we applied CytoTRACE to our POD 14 dermal scar data and found that, similar to our RNA-seq microdissection findings, fibroblasts exhibited significantly less transcriptional diversity in inner wound regions, further supporting fibroblast differentiation from the outer to the inner wound regions during tissue repair (SI Appendix, Fig. S16).

To further explore fibroblast cell fate with spatial resolution, we developed a method to combine our integrated single cell RNAATAC framework with Visium in order to impute spatially informed epigenomes for wound healing fibroblasts (Fig. 5A). As described above, we generated spatial transcriptomic data from unwounded skin and POD 2, 7, and 14 wounds. To extend this analysis to impute spatial epigenomic properties, we used our RNAATAC construct to ascribe partial membership values to fibroblasts present within each Visium spot. This was achieved by first subtracting out putative nonfibroblast contributions as described above, followed by anchor-based mapping into a higher-dimensional cluster space from our gene integration matrix (Fig. 5B and SI Appendix, Table S1). Parameterization was optimized to preserve spatial autocorrelation for the top measured and imputed gene expression distributions within the POD 14 dermis (SI Appendix, Fig. S17 A and B). To account for residual contributions from nonfibroblast cells that may remain after our initial subtraction step, we also spiked in RNA-seq data for keratinocytes, endothelial cells, macrophages, and neutrophils. The resulting putative reference matrix was then used to assign initial partial set memberships for each spatial datapoint using an anchor transferbased approach. A single-step spatial smoothing filter was applied to this membership space, followed by removal of nonfibroblast contributions and renormalization. The resulting partial set memberships for each spatial datapoint then allowed us to project higher-order epigenomic features from the scRNAATAC data onto these Visium samples (SI Appendix, Fig. S18 AD). These spatial epigenomic imputations provided a valuable complement to further refine our understanding of the fibroblast biology driving tissue repair. Detailed data analysis is provided in Fig. 5 C and D and SI Appendix, Figs. S19 and S20 and more broadly summarized below for each timepoint in the healing process.

Integrated analysis permits imputation of spatial epigenomic properties. (A) Punnett square schematic summarizing the data acquired in Figs. 2 and 4; setting the stage for imputation of spatial epigenomics. (B) Schematic summarizing imputation of spatial epigenomics. Multimodal scRNAATAC fibroblast data were first reclustered into a higher-resolution space to generate 20 partitions, each representing between 27 and 552 cell equivalents. Gene score matrix distributions, informed by both modalities, were then extracted for each partition and subjected to SCT transformation. Spike-in RNA-seq data for keratinocytes, endothelial cells, granulocytes, and macrophages were obtained from pure Visium spots across all timepoints. These data were combined and subjected to a similar variance-stabilizing transformation. The resulting putative single-cell gene expression reference matrix was then used to assign initial partial set memberships for each spatial transcriptomic datapoint using an anchor transferbased approach. Nonfibroblast contributions were subsequently regressed out, and a single-step spatial smoothing filter was applied to the resulting membership space, followed by renormalization. The resulting partial set memberships for each spatial datapoint were then treated as a topological vector space, onto which epigenomic peak, motif, and binding activity from the 20 scRNAATAC partitions can be projected. (C) Visium plots showing POD 0, 2, 7, and 14 (Top to Bottom) wound sections, imputed spatial epigenomics. For housekeeping genes such as Hprt (Top), gene imputed matrix (GIM) correlates with gene score matrix (GSM) epigenomic data and is fairly stable over space and time (Top). However, for Runx1, which we have shown to be very active within wound fibroblasts, GSM data show opening at the Runx1 motif at POD 2, which yields strong gene expression primarily among inner wound fibroblasts at POD 7 (Bottom). (D) Visium plots showing POD 0, 2, 7, and 14 (Top to Bottom) wound sections, motif deviations for genes of interest related to FAK-mediated mechanotransduction, and fibroblast proliferation including Runx1, Ets1, and Ehf.

Immediately following wound injury, tissue trauma leads to inflammatory cell recruitment, provisional clot formation, and a dermal gap resulting in loss of contact inhibition among local fibroblasts. These fibroblasts are recruited into the wound bed and begin proliferating. Our data suggest that by POD 2, subsets of these cells have differentiated along the wound margin to form a putative Activated-Responder Fibroblast subpopulation. Other, less-differentiated and more mechanosensitive (mechanofibrotic), fibroblasts become preactivated in the deeper dermis at this point, increasing chromatin accessibility for Runx1, which is a primary regulator of mesenchymal progenitor cell proliferation and differentiation (33).

By POD 7, macrophage-dominated granulation tissue occupies the central wound defect, allowing overlying keratinocyte proliferation and reepithelialization. At this time, mechanofibrotic Fibroblasts begin to differentiate as they finish migrating toward the wound center, where they appear to transition to a more Proliferator subpopulation. These cells are strongly profibrotic and characterized by elevated Spp1 gene expression and chromatin accessibility. In parallel, a population of Remodeling Fibroblasts begins to appear in the outer deep dermis (Fig. 4 C and D and SI Appendix, Fig. S15 A and B).

At POD 14, reepithelialization is complete, and the wound is traditionally considered to be healed. However, while keratinocyte activity does decrease at this time (consistent with completion of reepithelialization), there remains a strong immune cell presence, supported by continued wound fibroblast chemokine secretion, to stimulate active fibrosis in the dermal layer (SI Appendix, Fig. S14 E and F).

Considering our imputed spatial epigenomics data more globally, we observed that changes to chromatin accessibility frequently preceded downstream changes in gene expression, even within the constraints of our coarse temporal sampling (Fig. 5 C and D and SI Appendix, Fig. S19 AC). For example, we found that the Runx1 motif, which is downstream from and regulated by FAK mechanotransduction, initially becomes open at POD 2, remains open particularly along the leading wound edge at POD 7, and then begins to decrease in accessibility throughout the nascent scar at POD 14. Similarly, Col1a2 motif opening precedes a dramatic increase in Col1a2 gene expression seen in the POD 14 wound scar.

In aggregate, these studies represent a framework for the comprehensive elucidation of wound healing fibroblast phenotypes based on both gene expression and chromatin accessibility across time, space, and lineage. Furthermore, these findings allow us to reevaluate the classical stages of wound healing, typically described as three overlapping phases: inflammation (POD 2), proliferation (POD 7), and remodeling (POD 14) (3). Based on our findings, we propose reframing these overlapping stages as: 1) Early inflammation, in which immune cells are migrating and infiltrating the injury site without proliferation; 2) reepithelialization, which includes rapid keratinocyte proliferation across the wound surface, fibroblast recruitment, and macrophage proliferation; and 3) activated fibrosis, where maximal fibroblast activation is achieved and sustained in a slow asymptotic decay by steady-state inflammatory signaling beneath the healed wound (SI Appendix, Figs. S21 AD and S22 A and B).

In this manuscript, we define fibroblast biology throughout the course of wound healing using integrated, single-cell multimodal -omics to unravel the spatial, temporal, and functional heterogeneity of these cells. We demonstrate that fibroblasts are activated from tissue-resident cells in response to injury and proliferate polyclonally to fill the wound gap. Furthermore, we demonstrate that fibroblasts undergo spatially informed differentiation during this process.

Elucidating these relationships required the integration of nascent technologies and data platforms in what is still a rapidly evolving field of multiomic imputation. This work demonstrates the paired analysis of single-cell RNA and chromatin accessibility with spatial resolution in the context of tissue repair. This approach provides a unique lens through which we can view complex cell processes, and specifically allowed us to demonstrate that upstream chromatin changes surrounding mechanical signaling elements precede transcriptional activation and cell proliferation, thus suggesting a mechanistic link from tissue force to activation of wound healing fibroblasts.

Furthermore, we were able to identify and characterize putative, functionally distinct fibroblast subpopulations with divergent transcriptional and epigenomic programs. We provisionally designate these four wound healing fibroblast phenotypes as Mechanofibrotic, Activated Responder, Proliferator, and Remodeling. Following skin injury, fibroblasts are locally recruited and migrate to the wound. By POD 2, a subset of fibroblasts appears to have differentiated to form an activated-responder subpopulation, while the remaining outer wound fibroblasts comprise the less differentiated mechanofibrotic cells. The latter fibroblasts highly express known fibrosis-associated markers such as Engrailed-1 (23, 24), Col1a1 (34), Tgbf2 (35), and Jun (36). At POD 7, mechanofibrotic cells begin to differentiate in response to mechanotransduction cues as they migrate toward the wound center. By POD 14, despite complete epithelialization, healed wounds remain in a steady state of fibrosis, maintained through sustained inflammatory signaling within scar tissue. Additional studies examining even later timepoints will be required to further characterize the dynamics of these cells within the healed scar tissue.

Taken together, these results illustrate fundamental principles underlying the cellular response to tissue injury. We demonstrate that populations of fibroblasts migrate, proliferate, and differentiate in an adaptive, dynamic response to disruption of their local mechanical environment. Understanding the origin, activation, and differentiation trajectories of injury-responsive cells is critical to develop therapeutic strategies to promote optimal tissue repair.

Read more:
Integrated spatial multiomics reveals fibroblast fate during tissue repair - pnas.org

Faster healing of wounds can decrease pain and suffering and save lives – WSAZ-TV

Published: Oct. 4, 2021 at 4:02 PM EDT|Updated: 23 hours ago

ORLANDO, Fla., Oct. 4, 2021 /PRNewswire/ --Billions of dollars are spent every year because of complications of wound healing. Researchers at the College of Medicine at the University of Central Florida (UCF) in Orlando have discovered a new technology to accelerate wound healing. Their research is published in the Life Cell Biology and Tissue Engineering Journal (https://pubmed.ncbi.nlm.nih.gov/34575027/). The UCF lab's research focus is to develop stem cell therapies for neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, wound healing and ALS.

Researchers at the College of Medicine at UCF in Orlando have discovered a new technology to accelerate wound healing.

Dr. Frederick R Carrick, Professor of Neurology at the College of Medicine at UCF, reported that animals with wounds and injured stem cells that were placed on a special ceramic blanket healed much faster than controls. Gladiator Therapeutics manufactured the therapeutic ceramic blanket that was used in this research. The researchers reported that wounds in animals and in stem cells were both repaired significantly faster when they treated them with the ceramic blankets.

This research was designed and accepted for presentation at the USA Department of Defense's premier scientific meeting, the Military Health System Research Symposium (MHSRS). Dr Carrick stated that the new ceramic blankets do not need a power supply and are ideally suited for use in both combat and civilian wound treatments. Large wounds, such as those suffered in combat are easily infected and may result in increased suffering, disability and death amongst Warfighters. Faster healing of wounds can decrease pain and suffering and save lives.

The UCF College of Medicine research team is conducting ongoing research on the use of the Gladiator ceramic blanket in animal models of Alzheimer's and Parkinson's disease, traumatic brain injury and wound care. They have recently developed a new Alzheimer's therapy combining drugs that affect stem cells that increase the development of brain cells and improve brain function. The UCF lab is also the first to transplant stem cells isolated from the human brain to aged rats where they showed increased development of new brain cells and improvement of cognition.

Dr. Kiminobu Sugaya, Professor of Medicine at the UCF College of Medicine is excited about their findings. Dr. Sugaya stated that the benefits of using the Gladiator ceramic blanket are that it can be used anywhere without a power supply or the side effects that are commonly found when injecting chemicals or drugs.

Further information about this study:

drfrcarrick@post.harvard.edu 321-868-6464

View original content to download multimedia:

SOURCE University of Central Florida College of Medicine

The above press release was provided courtesy of PRNewswire. The views, opinions and statements in the press release are not endorsed by Gray Media Group nor do they necessarily state or reflect those of Gray Media Group, Inc.

Read the original here:
Faster healing of wounds can decrease pain and suffering and save lives - WSAZ-TV