Sullivan, P. F. & Geschwind, D. H. Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell 177, 162183 (2019).
Article CAS PubMed PubMed Central Google Scholar
de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 17, 353364 (2016).
Article PubMed Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545 (2005).
Article CAS PubMed PubMed Central Google Scholar
Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 25, 2529 (2000).
Article CAS PubMed PubMed Central Google Scholar
Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217234.e4 (2019).
Article CAS PubMed PubMed Central Google Scholar
Hill, W. D. et al. A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Mol. Psychiatry 24, 169181 (2019).
Article CAS PubMed Google Scholar
Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 22, 343352 (2019).
Article CAS PubMed PubMed Central Google Scholar
Trubetskoy, V. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature 604, 502508 (2022).
Article CAS PubMed PubMed Central Google Scholar
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
Article PubMed PubMed Central Google Scholar
Simillion, C., Liechti, R., Lischer, H. E. L., Ioannidis, V. & Bruggmann, R. Avoiding the pitfalls of gene set enrichment analysis with SetRank. BMC Bioinform. 18, 151 (2017).
Article Google Scholar
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 12281235 (2015).
Article CAS PubMed PubMed Central Google Scholar
Goeman, J. J. & Bhlmann, P. Analyzing gene expression data in terms of gene sets: methodological issues. Bioinformatics 23, 980987 (2007).
Article CAS PubMed Google Scholar
Tashman, K. C., Cui, R., OConnor, L. J., Neale, B. M. & Finucane, H. K. Significance testing for small annotations in stratified LD-Score regression. Preprint at medRxiv https://doi.org/10.1101/2021.03.13.21249938 (2021).
Speed, D., Cai, N., Johnson, M. R., Nejentsev, S. & Balding, D. J. Reevaluation of SNP heritability in complex human traits. Nat. Genet. 49, 986992 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zabad, S., Ragsdale, A. P., Sun, R., Li, Y. & Gravel, S. Assumptions about frequency-dependent architectures of complex traits bias measures of functional enrichment. Genet. Epidemiol. 45, 621632 (2021).
Article CAS PubMed Google Scholar
Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).
Article PubMed PubMed Central Google Scholar
Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability of phenotypes estimated with a univariate Gaussian mixture model. PLoS Genet. 16, e1008612 (2020).
Article CAS PubMed PubMed Central Google Scholar
Shadrin, A. A. et al. Phenotype-specific differences in polygenicity and effect size distribution across functional annotation categories revealed by AI-MiXeR. Bioinformatics 36, 47494756 (2020).
Article CAS PubMed PubMed Central Google Scholar
Holland, D. et al. The genetic architecture of human complex phenotypes is modulated by linkage disequilibrium and heterozygosity. Genetics 217, iyaa046 (2021).
Article PubMed PubMed Central Google Scholar
Kingma, D.P. & Ba, J. L. Adam: a method for stochastic optimization. arXiv (2014).
Chen, J. et al. The trans-ancestral genomic architecture of glycemic traits. Nat. Genet. 53, 840860 (2021).
Article CAS PubMed PubMed Central Google Scholar
Clarke, T. K. et al. Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N=112117). Mol. Psychiatry 22, 13761384 (2017).
Article CAS PubMed PubMed Central Google Scholar
de Lange, K. M. et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256261 (2017).
Article PubMed PubMed Central Google Scholar
Evangelou, E. et al. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat. Genet. 50, 14121425 (2018).
Article CAS PubMed PubMed Central Google Scholar
Hautakangas, H. et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 54, 152160 (2022).
Article CAS PubMed PubMed Central Google Scholar
Mahajan, A. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat. Genet. 50, 15051513 (2018).
Article CAS PubMed PubMed Central Google Scholar
Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115123 (2022).
Article CAS PubMed PubMed Central Google Scholar
Okbay, A. et al. Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nat. Genet. 54, 437449 (2022).
Article CAS PubMed PubMed Central Google Scholar
Savage, J. E. et al. Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat. Genet. 50, 912919 (2018).
Article CAS PubMed PubMed Central Google Scholar
Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).
Article CAS PubMed PubMed Central Google Scholar
The, C.-H.G.I. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur. J. Hum. Genet. 28, 715718 (2020).
Article Google Scholar
Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 13391348 (2019).
Article CAS PubMed Google Scholar
Wightman, D. P. et al. A genome-wide association study with 1,126,563 individuals identifies new risk loci for Alzheimers disease. Nat. Genet. 53, 12761282 (2021).
Article CAS PubMed PubMed Central Google Scholar
Wuttke, M. et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat. Genet. 51, 957972 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in ~ 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 36413649 (2018).
Article CAS PubMed PubMed Central Google Scholar
Smeland, O. B., Frei, O., Dale, A. M. & Andreassen, O. A. The polygenic architecture of schizophreniarethinking pathogenesis and nosology. Nat. Rev. Neurol. 16, 366379 (2020).
Article PubMed Google Scholar
Nakazawa, K. et al. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 62, 15741583 (2012).
Article CAS PubMed Google Scholar
Stedehouder, J. & Kushner, S. A. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol. Psychiatry 22, 412 (2017).
Article CAS PubMed Google Scholar
Berrandou, T.-E., Balding, D. & Speed, D. LDAK-GBAT: fast and powerful gene-based association testing using summary statistics. Am. J. Hum. Genet. 110, 2329 (2023).
Article CAS PubMed Google Scholar
Gazal, S. et al. Linkage disequilibrium-dependent architecture of human complex traits shows action of negative selection. Nat. Genet. 49, 14211427 (2017).
Article CAS PubMed PubMed Central Google Scholar
Moon, A. L., Haan, N., Wilkinson, L. S., Thomas, K. L. & Hall, J. CACNA1C: association with psychiatric disorders, behavior, and neurogenesis. Schizophr. Bull. 44, 958965 (2018).
Article PubMed PubMed Central Google Scholar
Singh, T. et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature 604, 509516 (2022).
Article CAS PubMed PubMed Central Google Scholar
Howes, O. D. & Kapur, S. The dopamine hypothesis of schizophrenia: version IIIthe final common pathway. Schizophr. Bull. 35, 549562 (2009).
Article PubMed PubMed Central Google Scholar
Fusar-Poli, P. & Meyer-Lindenberg, A. Striatal presynaptic dopamine in schizophrenia, part II: meta-analysis of [18F/11C]-DOPA PET studies. Schizophr. Bull. 39, 3342 (2013).
Article PubMed Google Scholar
Huhn, M. et al. Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet 394, 939951 (2019).
Article CAS PubMed PubMed Central Google Scholar
Harrison, P. J. Schizophrenia susceptibility genes and neurodevelopment. Biol. Psychiatry 61, 11191120 (2007).
Article PubMed Google Scholar
Burch, K. S. et al. Partitioning gene-level contributions to complex-trait heritability by allele frequency identifies disease-relevant genes. Am. J. Hum. Genet. 109, 692709 (2022).
Article CAS PubMed PubMed Central Google Scholar
Yao, D. W., OConnor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626633 (2020).
Article CAS PubMed PubMed Central Google Scholar
Siewert-Rocks, K. M., Kim, S. S., Yao, D. W., Shi, H. & Price, A. L. Leveraging gene co-regulation to identify gene sets enriched for disease heritability. Am. J. Hum. Genet. 109, 393404 (2022).
Article CAS PubMed PubMed Central Google Scholar
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245252 (2016).
Article CAS PubMed PubMed Central Google Scholar
Zhu, X. & Stephens, M. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. Nat. Commun. 9, 4361 (2018).
Article PubMed PubMed Central Google Scholar