Category Archives: Genetics

Tour of Basic Genetics

tour

Learn how traits pass from parents to offspring.

tour

Explore traits, the characteristics that make us unique.

tour

Get to know DNA, the molecule that holds the universal code of life.

tour

Take a look at genes, the instructions for building a body.

tour

Learn how proteins form the foundation for all living things.

tour

These vehicles of inheritance pack a lot of information.

Funding provided by a gift from the R. Harold Burton Foundation.

APA format: Genetic Science Learning Center (2014, June 22) Tour of Basic Genetics. Learn.Genetics. Retrieved October 22, 2015, from http://learn.genetics.utah.edu/content/basics/ MLA format: Genetic Science Learning Center. "Tour of Basic Genetics." Learn.Genetics 22 October 2015 <http://learn.genetics.utah.edu/content/basics/> Chicago format: Genetic Science Learning Center, "Tour of Basic Genetics," Learn.Genetics, 22 June 2014, <http://learn.genetics.utah.edu/content/basics/> (22 October 2015)

Original post:

Tour of Basic Genetics

Ology Genetics – AMNH

Photos: DNA, ladybug, brown eye, blue eye, PCR, Gregor Mendel, peas: AMNH; Starfish: courtesy of AMNH Department of Library Services K4508; Perch fish: courtesy of AMNH Department of Library Services PK241; Illustrations: Louis Pappas, Steve Thurston, Eric Hamilton; DNA, nature/nurture: Kelvin Chan Boy at computer: Jim Steck; Fruit fly: courtesy of Flybase

Did you know that DNA carries all the information a cell needs to make you uniquely you? Take a look at the science of where it ALL begins.

Illustrations Steve Gray

Solve genetic riddles as you wind your way through the star-studded park.

Photos: Dr. Ian Wilmut and Dolly; Dolly and her birth mother, courtesy of the Roslin Institute; Illustrations: Clay Meyer

Investigate the how and why of cloning. This Web page helps kids understand cloning and explains some of the ethical issues involved.

Photos: George Barrowclough: courtesy of R.J. Gutierrez; Humpback whales, Howard Rosenbaum: courtesy of Peter J. Ersts, Center for Biodiversity and Conservation, AMNH; Owl: John and Karen Hollingsworth, U.S. Fish and Wildlife Service; Yael Wyner: courtesy of Yael Wyner; Joel Cracraft: courtesy of Joel Cracraft; Sumatran Tiger: courtesy of Jessie Cohen, Smithsonian's National Zoo; Lemur: courtesy of Duke University Primate Center; Daniela Calcagnotto: Courtesy of Daniela Calcagnotto; Pacu: courtesy of Leonard Lovshin, Department of Fisheries and Allied Aquacultures, Auburn University; St. Vincent parrots, Mike Russello: courtesy of Mike Russello; Illustrations: Louis Pappas, Steve Thurston, Eric Hamilton

Travel around the world with museum scientists: from Madagascar to the Western U.S. to the island of Sumatra in Indonesia.

Photos: George Amato, Lab machines: courtesy of Denis Finnin, AMNH; Caimans: courtesy of Santos Breyer, Crocodilian Photo Gallery; Elephant: courtesy of Jason Lelchuk, AMNH; American Crocodile: courtesy of Julio Caballeros Sigme, Florida Museum of Natural History; Tibetan Antelope: courtesy of George B. Schaller; Products: courtesy of Meg Carlough

Join scientist George Amato on his quest to stop criminals smuggling illegal goods.

All photos: AMNH

Here's a very cool experiment that just might bring a tear to your eye. Use a blender to separate the DNA from an onion.

Illustrations: Daryl Collins

Find out what makes you different from a snail, a tree, or even your best friend!

Photos: Salmon, Florida Panther: courtesy of U.S. Fish and Wildlife Service; Ruffed lemur: courtesy of Duke University Primate Center; Congo Gorilla: courtesy of AMNH Department of Library Services 1636; Spotted owl: courtesy of U.S. Fish and Wildlife Service / photo by J&K Hollingsworth; Sumatran tiger: courtesy of Jessie Cohen, Smithsonian's National Zoo; Grevy's zebra: courtesy of AMNH Department of Library Services K10684; Asian Elephant: courtesy of Jason Lelchuk, AMNH; DNA, tongue curling, earlobe, thumb: courtesy of Denis Finnin, AMNH; Dolly: courtesy of the Roslin Institute; Corn, bananas, dog, bird, eye, flowers, buildings, glacier, human, tomato, cupcake, none: AMNH; Guinea pig: courtesy of AMNH Department of Library Services PK326; Mars: courtesy of David Crisp and the WFPC2 Science Team (Jet Propulsion Laboratory/California Institute of Technology)/NSSDC and NASA; Dusky Seaside Sparrow: courtesy of P.W. Sykes, U.S. Fish and Wildlife Service; Antelope: courtesy of George B. Schaller; Crocodile: courtesy of Santos Breyer, the Crocodilian Photo Gallery; Sea turtle: courtesy of David Vogel, U.S. Fish and Wildlife Service; Illustrations: Cell, Chromosome, DNA: Stephen Blue; Gene: Kelvin Chan; Mononykus dinosaur: Mick Ellison, AMNH; Woolly Mammoth: courtesy of AMNH Department of Library Services 2431, painting by Charles. R. Knight; Dodo Bird: courtesy of AMNH Department of Library Services 6261, Jean Pretre, from Henri-Marie Ducrotay de Blainville, Nouvelles annales du Museum d'Histoire Naturelle, Paris; Sabre tooth tiger: courtesy of AMNH Department of Library Services 1017; painting by Charles R. Knight

Make your opinion count!

Explore the gene scene with these seven books.

Photos: Rob De Salle: courtesy of Denis Finnin, AMNH; Illustrations: Daniel Guidera

Step into the future for a look at what cloning might do for you.

Illustrations: Animals: Steve Thurston; Journal Page: Carl Mehling

Want to figure out the wildlife in your area and the impact of genetics? Start a field journal, and track how your favorite critter looks and behaves.

Illustrations: Eric Hamilton

Send a note to a friend with these colorful letterheads.

Photos: Physics Notebook, Questions, Molecular Lab, Dog: AMNH; Narwhal: courtesy of AMNH Department of Library Services, 26177, Photo by A.S. Rudland and Sons, copied by Thos. Lunt, Feb. 19, 1910 from "The Living Animals of the World," Hutchinson and Co., London; Fruit fly: courtesy of AMNH Department of Library Services 101321; The Genomic Revolution AMNH exhibit pictures: Preparation, DNA Learning Lab, Nature/Nurture wall, Yeast: courtesy of Denis Finnin, AMNH; Chimpanzee: courtesy of AMNH Department of Library Services K12658 Salmon: courtesy of U.S. Fish and Wildlife Service

Find out where Rob has followed his born curiosity.

Photos: Rob DeSalle: Physics Notebook, Questions, Molecular Lab, Dog: AMNH; Narwhal: courtesy of AMNH Department of Library Services, 26177, Photo by A.S. Rudland and Sons, copied by Thos. Lunt, Feb. 19, 1910 from "The Living Animals of the World," Hutchinson and Co., London; Fruit fly: courtesy of AMNH Department of Library Services 101321; The Genomic Revolution AMNH exhibit pictures: Preparation, DNA Learning Lab, Nature/Nurture wall, Yeast: courtesy of Denis Finnin, AMNH; Chimpanzee: courtesy of AMNH Department of Library Services K12658 Salmon: courtesy of U.S. Fish and Wildlife Service; Kids: All people pictures and drawings: courtesy of subjects; Woolly Mammoth: courtesy of AMNH Department of Library Services 2431, painting by Charles. R. Knight Cat: courtesy of subject Farm: AMNH

Find out where Rob, Emily, Logan, and Seth have followed their born curiosity.

Illustrations: Wayne Vincent

What's the human genome project and what does it mean to you? Toby, Annie, and Claudia uncovered the answers.

Illustrations: Daryl Collins

The next time you eat a tomato, ask yourself: What would it taste like if there were a bit of flounder in it? Learn how scientists are using genetics to change the food you eat.

Photos: Monarch Butterfly, courtesy of AMNH Department of Library Services K14898; Grizzly Bear: courtesy of NPS; Sunflower: courtesy of Bruce Fritz, ARS; Chimpanzee: courtesy of AMNH Department of Library Services K12658; African Elephant: courtesy of Miriam Westervelt, U.S. Fish and Wildlife Service; Apple tree: courtesy of Doug Wilson, USDA; Red flour beetle: courtesy of Cereal Research Centre, AAFC; Brown trout: courtesy of Duane River, U.S. Fish and Wildlife Service; Supplies: AMNH; What to Do: (All photos): AMNH; DNA Model, Lady beetle: courtesy of Scott Bauer, ARS Fish, Daisy: AMNH; What You Need illustrations: Stephen Blue

How can you wear a chimp on your wristwithout getting primate elbow? The answer to this riddle is not as tough as it may seem.

Photos: DNA, AMNH; The Genomic Revolution Exhibit: courtesy of Denis Finnin, AMNH; Gene: AMNH; Dolly: courtesy of the Roslin Institute; Chimpanzee: courtesy of AMNH Department of Library Services K12658

How much do you know about what makes you you? Test your genetics knowledge with this interactive quiz.

Photos: People: courtesy of Denis Finnin, AMNH; Illustrations: Louis Pappas, Steve Thurston, Eric Hamilton; People: Jim Steck Genetics illustrations: Stephen Blue

Zoom inside your cells for a fascinating look at chromosomes, DNA, genes, and more!

Photos: Frozen Tissue Collection: All specimens from the Frozen Tissue Collection, frilled leaf-tailed gecko: AMNH / Denis Finnin cryovat, test tubes: AMNH / Craig Chesek humpback whale: John J. Mosesso / NBII coyote: AMNH; Gold: gold sheet mouflon, miniature sacrificial figurine, Spanish coins: AMNH / Craig Chesek Inca necklace: AMNH / Denis Finnin Eureka Bar: AMNH / Roderick Mickens astronaut in space: NASA computer chip: stock.xchng; Leeches: jaw: Eye of Science / Photo Researchers, Inc. bite mark: Geoff Tompkinson / Photo Researchers, Inc. leech feeding on snail: Edward Hendrycks, reproduce courtesy of the Canadian Museum of Nature leeches before and after blood meal, leeches on foot, American Medicinal Leech, Malagobdella vagans, Mark Siddall in swamp: courtesy of Mark Siddall; Dioramas: AMNH / Roderick Mickens; Mythic Creatures: All photos courtesy of American Museum of Natural History; Vietnam: pygmi loris, Tonkin snub-nosed monkey: Tilo Nadler / Frankfurt Zoological Society Oriental pit viper: Robert W. Murphy / Royal Ontario Museum scientists with camera trap: Kevin Frey / AMNH Center for Biodiversity and Conservation saola: European Commission, Social Forestry and Nature Conservation

Put your viewing skills to the test with this mystery photo challenge.

Tracking a gorilla can get hairy. Literally. Just ask George Amato.

See the original post here:

Ology Genetics - AMNH

Genetics | Biology | MIT OpenCourseWare

Course Features Course Description

This course discusses the principles of genetics with application to the study of biological function at the level of molecules, cells, and multicellular organisms, including humans. The topics include: structure and function of genes, chromosomes and genomes, biological variation resulting from recombination, mutation, and selection, population genetics, use of genetic methods to analyze protein function, gene regulation and inherited disease.

View original post here:

Genetics | Biology | MIT OpenCourseWare

Home > Genetics | Yale School of Medicine

The information in genomes provides the instruction set for producing each living organism on the planet. While we have a growing understanding of the basic biochemical functions of many of the individual genes in genomes, understanding the complex processes by which this encoded information is read out to orchestrate production of incredibly diverse cell types and organ functions, and how different species use strikingly similar gene sets to nonetheless produce fantastically diverse organismal morphologies with distinct survival and reproductive strategies, comprise many of the deepest questions in all of science. Moreover, we recognize that inherited or acquired variation in DNA sequence and changes in epigenetic states contribute to the causation of virtually every disease that afflicts our species. Spectacular advances in genetic and genomic analysis now provide the tools to answer these fundamental questions.

Members of the Department of Genetics conduct basic research using genetics and genomics of model organisms (yeast, fruit fly, worm, zebrafish, mouse) and humans to understand fundamental mechanisms of biology and disease. Areas of active investigation include genetic and epigenetic regulation of development, molecular genetics, genomics and cell biology of stem cells, the biochemistry of micro RNA production and their regulation of gene expression, and genetic and genomic analysis of diseases in model systems and humans including cancer, cardiovascular and kidney disease, neurodegeneration and regeneration, and neuropsychiatric disease. Members of the Department have also been at the forefront of technology development in the use of new methods for genetic analysis, including new methods for engineering mutations as well as new methods for production and analysis of large genomic data sets.

The Department sponsors a graduate program leading to the PhD in the areas of molecular genetics and genomics, development, and stem cell biology. Admission to the Graduate Program is through the Combined Programs in Biological and Biomedical Sciences (BBS).

In addition to these basic science efforts, the Department is also responsible for providing clinical care in Medical Genetics in the Yale New Haven Health System. Clinical genetics services include inpatient consultation and care, general, subspecialty, cancer and prenatal genetics clinics, and clinical laboratories for cytogenetics, DNA diagnostics, and biochemical diagnostics. The Department sponsors a Medical Genetics Residency program leading to certification by the American Board of Medical Genetics. Admission to the Genetics Residency is directly through the Department.

Read the original:

Home > Genetics | Yale School of Medicine

Genetics | MIT Biology

Research in genetics in this department employs a variety of organisms, ranging in complexity from bacteriophage to humans. Several groups are studying the process of transmission of genes by analyzing DNA replication, DNA repair, chromosome segregation and cell division.

The use of genetics to identify regulatory genes and to define biological mechanisms is a crucial tool in unraveling a myriad of biological problems. Among the processes being investigated via genetics by members of this department are aging, human genetic diseases, human spermatogenesis, cell death, neurobiology, developmental biology, protein processing and secretion, the cytoskeleton and cell architecture, and plant-bacterial communication.

Read the original:

Genetics | MIT Biology

Genetics articles: The New England Journal of Medicine

Our apologies. An error occurred while setting your user cookie. Please set your browser to accept cookies to continue.

NEJM.org uses cookies to improve performance by remembering your session ID when you navigate from page to page. This cookie stores just a session ID; no other information is captured. Accepting the NEJM cookie is necessary to use the website.

1-800-843-6356 | nejmcust@mms.org

Excerpt from:

Genetics articles: The New England Journal of Medicine

genetics | Britannica.com

Genetics,chromosomeCreated and produced by QA International. QA International, 2010. All rights reserved. http://www.qa-international.comstudy of heredity in general and of genes in particular. Genetics forms one of the central pillars of biology and overlaps with many other areas such as agriculture, medicine, and biotechnology.

Since the dawn of civilization, humankind has recognized the influence of heredity and has applied its principles to the improvement of cultivated crops and domestic animals. A Babylonian tablet more than 6,000 years old, for example, shows pedigrees of horses and indicates possible inherited characteristics. Other old carvings show cross-pollination of date palm trees. Most of the mechanisms of heredity, however, remained a mystery until the 19th century, when genetics as a systematic science began.

Crick, Francis Harry Compton: proposed DNA structureEncyclopdia Britannica, Inc.Genetics arose out of the identification of genes, the fundamental units responsible for heredity. Genetics may be defined as the study of genes at all levels, including the ways in which they act in the cell and the ways in which they are transmitted from parents to offspring. Modern genetics focuses on the chemical substance that genes are made of, called deoxyribonucleic acid, or DNA, and the ways in which it affects the chemical reactions that constitute the living processes within the cell. Gene action depends on interaction with the environment. Green plants, for example, have genes containing the information necessary to synthesize the photosynthetic pigment chlorophyll that gives them their green colour. Chlorophyll is synthesized in an environment containing light because the gene for chlorophyll is expressed only when it interacts with light. If a plant is placed in a dark environment, chlorophyll synthesis stops because the gene is no longer expressed.

Genetics as a scientific discipline stemmed from the work of Gregor Mendel in the middle of the 19th century. Mendel suspected that traits were inherited as discrete units, and, although he knew nothing of the physical or chemical nature of genes at the time, his units became the basis for the development of the present understanding of heredity. All present research in genetics can be traced back to Mendels discovery of the laws governing the inheritance of traits. The word genetics was introduced in 1905 by English biologist William Bateson, who was one of the discoverers of Mendels work and who became a champion of Mendels principles of inheritance.

Although scientific evidence for patterns of genetic inheritance did not appear until Mendels work, history shows that humankind must have been interested in heredity long before the dawn of civilization. Curiosity must first have been based on human family resemblances, such as similarity in body structure, voice, gait, and gestures. Such notions were instrumental in the establishment of family and royal dynasties. Early nomadic tribes were interested in the qualities of the animals that they herded and domesticated and, undoubtedly, bred selectively. The first human settlements that practiced farming appear to have selected crop plants with favourable qualities. Ancient tomb paintings show racehorse breeding pedigrees containing clear depictions of the inheritance of several distinct physical traits in the horses. Despite this interest, the first recorded speculations on heredity did not exist until the time of the ancient Greeks; some aspects of their ideas are still considered relevant today.

Hippocrates (c. 460c. 375 bce), known as the father of medicine, believed in the inheritance of acquired characteristics, and, to account for this, he devised the hypothesis known as pangenesis. He postulated that all organs of the body of a parent gave off invisible seeds, which were like miniaturized building components and were transmitted during sexual intercourse, reassembling themselves in the mothers womb to form a baby.

Aristotle (384322 bce) emphasized the importance of blood in heredity. He thought that the blood supplied generative material for building all parts of the adult body, and he reasoned that blood was the basis for passing on this generative power to the next generation. In fact, he believed that the males semen was purified blood and that a womans menstrual blood was her equivalent of semen. These male and female contributions united in the womb to produce a baby. The blood contained some type of hereditary essences, but he believed that the baby would develop under the influence of these essences, rather than being built from the essences themselves.

Aristotles ideas about the role of blood in procreation were probably the origin of the still prevalent notion that somehow the blood is involved in heredity. Today people still speak of certain traits as being in the blood and of blood lines and blood ties. The Greek model of inheritance, in which a teeming multitude of substances was invoked, differed from that of the Mendelian model. Mendels idea was that distinct differences between individuals are determined by differences in single yet powerful hereditary factors. These single hereditary factors were identified as genes. Copies of genes are transmitted through sperm and egg and guide the development of the offspring. Genes are also responsible for reproducing the distinct features of both parents that are visible in their children.

In the two millennia between the lives of Aristotle and Mendel, few new ideas were recorded on the nature of heredity. In the 17th and 18th centuries the idea of preformation was introduced. Scientists using the newly developed microscopes imagined that they could see miniature replicas of human beings inside sperm heads. French biologist Jean-Baptiste Lamarck invoked the idea of the inheritance of acquired characters, not as an explanation for heredity but as a model for evolution. He lived at a time when the fixity of species was taken for granted, yet he maintained that this fixity was only found in a constant environment. He enunciated the law of use and disuse, which states that when certain organs become specially developed as a result of some environmental need, then that state of development is hereditary and can be passed on to progeny. He believed that in this way, over many generations, giraffes could arise from deerlike animals that had to keep stretching their necks to reach high leaves on trees.

British naturalist Alfred Russel Wallace originally postulated the theory of evolution by natural selection. However, Charles Darwins observations during his circumnavigation of the globe aboard the HMS Beagle (183136) provided evidence for natural selection and his suggestion that humans and animals shared a common ancestry. Many scientists at the time believed in a hereditary mechanism that was a version of the ancient Greek idea of pangenesis, and Darwins ideas did not appear to fit with the theory of heredity that sprang from the experiments of Mendel.

Before Gregor Mendel, theories for a hereditary mechanism were based largely on logic and speculation, not on experimentation. In his monastery garden, Mendel carried out a large number of cross-pollination experiments between variants of the garden pea, which he obtained as pure-breeding lines. He crossed peas with yellow seeds to those with green seeds and observed that the progeny seeds (the first generation, F1) were all yellow. When the F1 individuals were self-pollinated or crossed among themselves, their progeny (F2) showed a ratio of 3:1 (3/4 yellow and 1/4 green). He deduced that, since the F2 generation contained some green individuals, the determinants of greenness must have been present in the F1 generation, although they were not expressed because yellow is dominant over green. From the precise mathematical 3:1 ratio (of which he found several other examples), he deduced not only the existence of discrete hereditary units (genes) but also that the units were present in pairs in the pea plant and that the pairs separated during gamete formation. Hence, the two original lines of pea plants were proposed to be YY (yellow) and yy (green). The gametes from these were Y and y, thereby producing an F1 generation of Yy that were yellow in colour because of the dominance of Y. In the F1 generation, half the gametes were Y and the other half were y, making the F2 generation produced from random mating 1/4 Yy, 1/2 YY, and 1/4 yy, thus explaining the 3:1 ratio. The forms of the pea colour genes, Y and y, are called alleles.

Mendel also analyzed pure lines that differed in pairs of characters, such as seed colour (yellow versus green) and seed shape (round versus wrinkled). The cross of yellow round seeds with green wrinkled seeds resulted in an F1 generation that were all yellow and round, revealing the dominance of the yellow and round traits. However, the F2 generation produced by self-pollination of F1 plants showed a ratio of 9:3:3:1 (9/16 yellow round, 3/16 yellow wrinkled, 3/16 green round, and 1/16 green wrinkled; note that a 9:3:3:1 ratio is simply two 3:1 ratios combined). From this result and others like it, he deduced the independent assortment of separate gene pairs at gamete formation.

Mendels success can be attributed in part to his classic experimental approach. He chose his experimental organism well and performed many controlled experiments to collect data. From his results, he developed brilliant explanatory hypotheses and went on to test these hypotheses experimentally. Mendels methodology established a prototype for genetics that is still used today for gene discovery and understanding the genetic properties of inheritance.

Mendels genes were only hypothetical entities, factors that could be inferred to exist in order to explain his results. The 20th century saw tremendous strides in the development of the understanding of the nature of genes and how they function. Mendels publications lay unmentioned in the research literature until 1900, when the same conclusions were reached by several other investigators. Then there followed hundreds of papers showing Mendelian inheritance in a wide array of plants and animals, including humans. It seemed that Mendels ideas were of general validity. Many biologists noted that the inheritance of genes closely paralleled the inheritance of chromosomes during nuclear divisions, called meiosis, that occur in the cell divisions just prior to gamete formation.

heredity: sex-linked inheritance in Drosophila fliesEncyclopdia Britannica, Inc.It seemed that genes were parts of chromosomes. In 1910 this idea was strengthened through the demonstration of parallel inheritance of certain Drosophila (a type of fruit fly) genes on sex-determining chromosomes by American zoologist and geneticist Thomas Hunt Morgan. Morgan and one of his students, Alfred Henry Sturtevant, showed not only that certain genes seemed to be linked on the same chromosome but that the distance between genes on the same chromosome could be calculated by measuring the frequency at which new chromosomal combinations arose (these were proposed to be caused by chromosomal breakage and reunion, also known as crossing over). In 1916 another student of Morgans, Calvin Bridges, used fruit flies with an extra chromosome to prove beyond reasonable doubt that the only way to explain the abnormal inheritance of certain genes was if they were part of the extra chromosome. American geneticist Hermann Joseph Mller showed that new alleles (called mutations) could be produced at high frequencies by treating cells with X-rays, the first demonstration of an environmental mutagenic agent (mutations can also arise spontaneously). In 1931 American botanist Harriet Creighton and American scientist Barbara McClintock demonstrated that new allelic combinations of linked genes were correlated with physically exchanged chromosome parts.

In 1908 British physician Archibald Garrod proposed the important idea that the human disease alkaptonuria, and certain other hereditary diseases, were caused by inborn errors of metabolism, suggesting for the first time that linked genes had molecular action at the cell level. Molecular genetics did not begin in earnest until 1941 when American geneticist George Beadle and American biochemist Edward Tatum showed that the genes they were studying in the fungus Neurospora crassa acted by coding for catalytic proteins called enzymes. Subsequent studies in other organisms extended this idea to show that genes generally code for proteins. Soon afterward, American bacteriologist Oswald Avery, Canadian American geneticist Colin M. MacLeod, and American biologist Maclyn McCarty showed that bacterial genes are made of DNA, a finding that was later extended to all organisms.

DNAEncyclopdia Britannica, Inc.A major landmark was attained in 1953 when American geneticist and biophysicist James D. Watson and British biophysicists Francis Crick and Maurice Wilkins devised a double helix model for DNA structure. This model showed that DNA was capable of self-replication by separating its complementary strands and using them as templates for the synthesis of new DNA molecules. Each of the intertwined strands of DNA was proposed to be a chain of chemical groups called nucleotides, of which there were known to be four types. Because proteins are strings of amino acids, it was proposed that a specific nucleotide sequence of DNA could contain a code for an amino acid sequence and hence protein structure. In 1955 American molecular biologist Seymour Benzer, extending earlier studies in Drosophila, showed that the mutant sites within a gene could be mapped in relation to each other. His linear map indicated that the gene itself is a linear structure.

In 1958 the strand-separation method for DNA replication (called the semiconservative method) was demonstrated experimentally for the first time by American molecular biologist Matthew Meselson and American geneticist Franklin W. Stahl. In 1961 Crick and South African biologist Sydney Brenner showed that the genetic code must be read in triplets of nucleotides, called codons. American geneticist Charles Yanofsky showed that the positions of mutant sites within a gene matched perfectly the positions of altered amino acids in the amino acid sequence of the corresponding protein. In 1966 the complete genetic code of all 64 possible triplet coding units (codons), and the specific amino acids they code for, was deduced by American biochemists Marshall Nirenberg and Har Gobind Khorana. Subsequent studies in many organisms showed that the double helical structure of DNA, the mode of its replication, and the genetic code are the same in virtually all organisms, including plants, animals, fungi, bacteria, and viruses. In 1961 French biologist Franois Jacob and French biochemist Jacques Monod established the prototypical model for gene regulation by showing that bacterial genes can be turned on (initiating transcription into RNA and protein synthesis) and off through the binding action of regulatory proteins to a region just upstream of the coding region of the gene.

Technical advances have played an important role in the advance of genetic understanding. In 1970 American microbiologists Daniel Nathans and Hamilton Othanel Smith discovered a specialized class of enzymes (called restriction enzymes) that cut DNA at specific nucleotide target sequences. That discovery allowed American biochemist Paul Berg in 1972 to make the first artificial recombinant DNA molecule by isolating DNA molecules from different sources, cutting them, and joining them together in a test tube. These advances allowed individual genes to be cloned (amplified to a high copy number) by splicing them into self-replicating DNA molecules, such as plasmids (extragenomic circular DNA elements) or viruses, and inserting these into living bacterial cells. From these methodologies arose the field of recombinant DNA technology that presently dominates molecular genetics. In 1977 two different methods were invented for determining the nucleotide sequence of DNA: one by American molecular biologists Allan Maxam and Walter Gilbert and the other by English biochemist Fred Sanger. Such technologies made it possible to examine the structure of genes directly by nucleotide sequencing, resulting in the confirmation of many of the inferences about genes originally made indirectly.

DNA fingerprinting: polymerase chain reactionEncyclopdia Britannica, Inc.In the 1970s Canadian biochemist Michael Smith revolutionized the art of redesigning genes by devising a method for inducing specifically tailored mutations at defined sites within a gene, creating a technique known as site-directed mutagenesis. In 1983 American biochemist Kary B. Mullis invented the polymerase chain reaction, a method for rapidly detecting and amplifying a specific DNA sequence without cloning it. In the last decade of the 20th century, progress in recombinant DNA technology and in the development of automated sequencing machines led to the elucidation of complete DNA sequences of several viruses, bacteria, plants, and animals. In 2001 the complete sequence of human DNA, approximately three billion nucleotide pairs, was made public.

A time line of important milestones in the history of genetics is provided in the table.

Time line of important milestones in the history of genetics

Classical genetics, which remains the foundation for all other areas in genetics, is concerned primarily with the method by which genetic traitsclassified as dominant (always expressed), recessive (subordinate to a dominant trait), intermediate (partially expressed), or polygenic (due to multiple genes)are transmitted in plants and animals. These traits may be sex-linked (resulting from the action of a gene on the sex, or X, chromosome) or autosomal (resulting from the action of a gene on a chromosome other than a sex chromosome). Classical genetics began with Mendels study of inheritance in garden peas and continues with studies of inheritance in many different plants and animals. Today a prime reason for performing classical genetics is for gene discoverythe finding and assembling of a set of genes that affects a biological property of interest.

Cytogenetics, the microscopic study of chromosomes, blends the skills of cytologists, who study the structure and activities of cells, with those of geneticists, who study genes. Cytologists discovered chromosomes and the way in which they duplicate and separate during cell division at about the same time that geneticists began to understand the behaviour of genes at the cellular level. The close correlation between the two disciplines led to their combination.

Plant cytogenetics early became an important subdivision of cytogenetics because, as a general rule, plant chromosomes are larger than those of animals. Animal cytogenetics became important after the development of the so-called squash technique, in which entire cells are pressed flat on a piece of glass and observed through a microscope; the human chromosomes were numbered using this technique.

Today there are multiple ways to attach molecular labels to specific genes and chromosomes, as well as to specific RNAs and proteins, that make these molecules easily discernible from other components of cells, thereby greatly facilitating cytogenetics research.

Microorganisms were generally ignored by the early geneticists because they are small in size and were thought to lack variable traits and the sexual reproduction necessary for a mixing of genes from different organisms. After it was discovered that microorganisms have many different physical and physiological characteristics that are amenable to study, they became objects of great interest to geneticists because of their small size and the fact that they reproduce much more rapidly than larger organisms. Bacteria became important model organisms in genetic analysis, and many discoveries of general interest in genetics arose from their study. Bacterial genetics is the centre of cloning technology.

Viral genetics is another key part of microbial genetics. The genetics of viruses that attack bacteria were the first to be elucidated. Since then, studies and findings of viral genetics have been applied to viruses pathogenic on plants and animals, including humans. Viruses are also used as vectors (agents that carry and introduce modified genetic material into an organism) in DNA technology.

Molecular genetics is the study of the molecular structure of DNA, its cellular activities (including its replication), and its influence in determining the overall makeup of an organism. Molecular genetics relies heavily on genetic engineering (recombinant DNA technology), which can be used to modify organisms by adding foreign DNA, thereby forming transgenic organisms. Since the early 1980s, these techniques have been used extensively in basic biological research and are also fundamental to the biotechnology industry, which is devoted to the manufacture of agricultural and medical products. Transgenesis forms the basis of gene therapy, the attempt to cure genetic disease by addition of normally functioning genes from exogenous sources.

The development of the technology to sequence the DNA of whole genomes on a routine basis has given rise to the discipline of genomics, which dominates genetics research today. Genomics is the study of the structure, function, and evolutionary comparison of whole genomes. Genomics has made it possible to study gene function at a broader level, revealing sets of genes that interact to impinge on some biological property of interest to the researcher. Bioinformatics is the computer-based discipline that deals with the analysis of such large sets of biological information, especially as it applies to genomic information.

The study of genes in populations of animals, plants, and microbes provides information on past migrations, evolutionary relationships and extents of mixing among different varieties and species, and methods of adaptation to the environment. Statistical methods are used to analyze gene distributions and chromosomal variations in populations.

Population genetics is based on the mathematics of the frequencies of alleles and of genetic types in populations. For example, the Hardy-Weinberg formula, p2 + 2pq + q2 = 1, predicts the frequency of individuals with the respective homozygous dominant (AA), heterozygous (Aa), and homozygous recessive (aa) genotypes in a randomly mating population. Selection, mutation, and random changes can be incorporated into such mathematical models to explain and predict the course of evolutionary change at the population level. These methods can be used on alleles of known phenotypic effect, such as the recessive allele for albinism, or on DNA segments of any type of known or unknown function.

Human population geneticists have traced the origins and migration and invasion routes of modern humans, Homo sapiens. DNA comparisons between the present peoples on the planet have pointed to an African origin of Homo sapiens. Tracing specific forms of genes has allowed geneticists to deduce probable migration routes out of Africa to the areas colonized today. Similar studies show to what degree present populations have been mixed by recent patterns of travel.

Another aspect of genetics is the study of the influence of heredity on behaviour. Many aspects of animal behaviour are genetically determined and can therefore be treated as similar to other biological properties. This is the subject material of behaviour genetics, whose goal is to determine which genes control various aspects of behaviour in animals. Human behaviour is difficult to analyze because of the powerful effects of environmental factors, such as culture. Few cases of genetic determination of complex human behaviour are known. Genomics studies provide a useful way to explore the genetic factors involved in complex human traits such as behaviour.

Some geneticists specialize in the hereditary processes of human genetics. Most of the emphasis is on understanding and treating genetic disease and genetically influenced ill health, areas collectively known as medical genetics. One broad area of activity is laboratory research dealing with the mechanisms of human gene function and malfunction and investigating pharmaceutical and other types of treatments. Since there is a high degree of evolutionary conservation between organisms, research on model organismssuch as bacteria, fungi, and fruit flies (Drosophila)which are easier to study, often provides important insights into human gene function.

Many single-gene diseases, caused by mutant alleles of a single gene, have been discovered. Two well-characterized single-gene diseases include phenylketonuria (PKU) and Tay-Sachs disease. Other diseases, such as heart disease, schizophrenia, and depression, are thought to have more complex heredity components that involve a number of different genes. These diseases are the focus of a great deal of research that is being carried out today.

Another broad area of activity is clinical genetics, which centres on advising parents of the likelihood of their children being affected by genetic disease caused by mutant genes and abnormal chromosome structure and number. Such genetic counseling is based on examining individual and family medical records and on diagnostic procedures that can detect unexpressed, abnormal forms of genes. Counseling is carried out by physicians with a particular interest in this area or by specially trained nonphysicians.

View original post here:

genetics | Britannica.com

Genetics News – Genetics Science, Genetics Technology, Genetics

Last update 23andMe returns with FDA-approved genetic health tests, Oct 21, 2015

Genetic ancestry, as well as facial characteristics, may play an important part in who we select as mates, according to an analysis from UC San Francisco, Microsoft Research, Harvard, UC Berkeley and Tel Aviv University.

(Medical Xpress)A large team of researchers affiliated with multiple institutions in several European countries has found new genetic variants that put heavy drinkers at higher risk of developing cirrhosis of the liver. ...

Genetic testing company 23andMe is reintroducing some health screening tools that federal regulators forced off the market more than two years ago, due to concerns about their accuracy and interpretation by customers.

Researchers at King's College London have identified a new gene linked to nerve function, which could provide a treatment target for 'switching off' the gene in people with neurodegenerative diseases such as Parkinson's disease.

Never before have scientists been able to make scores of simultaneous genetic edits to an organism's genome. But now, in a landmark study by George Church and his team at the Wyss Institute for Biologically Inspired Engineering ...

Eczema - an itchy dry-skin condition - affects an estimated one in five children and one in 12 adults in the UK. Genes play an important role in determining how likely we are to develop eczema but the majority of the genes ...

Genes involved in schizophrenia and obesity have been highlighted in a new UCL study, which could lead to a better understanding of the DNA variants which affect risk of these conditions and aid the development of improved ...

We've known for years that the Huntingtin protein (Htt) is responsible for Huntington's disease, a neurodegenerative disorder that diminishes a person's mental and physical abilities.

Using two complementary analytical approaches, scientists at Whitehead Institute and Broad Institute of MIT and Harvard have for the first time identified the universe of genes in the human genome essential for the survival ...

A coalition of leukemia researchers led by scientists from UC San Francisco has discovered surprising genetic diversity in juvenile myelomonocytic leukemia (JMML), a rare but aggressive childhood blood cancer.

The proposed Regulation on In Vitro Diagnostic Medical Devices (IVDs) negotiations, currently at the stage of tripartite negotiations between the Council (representing Member State governments), the European Parliament, and ...

In the kidney, injured cells can be kicked into reparative mode by a gene called Sox9, according to a new paper published in Cell Reports.

University of Otago researchers working with zebrafish have published a study providing new insights into the causes of the congenital heart defects associated with a rare developmental disorder.

The team behind the Deciphering Developmental Disorders (DDD) Study, one of the world's largest nationwide rare disease genome-wide sequencing initiatives, have developed a novel computational approach to identify genetic ...

The whimsically named sonic hedgehog gene, best known for controlling embryonic development, also maintains the normal physiological state and repair process of an adult healthy lung, if damaged, according to new research ...

A research group at Tohoku Medical Megabank Organization (ToMMo) has successfully constructed a Japanese population reference panel (1KJPN), from the genome information of 1,070 individuals who had participated in the cohort ...

Walt Whitman's famous line, "I am large, I contain multitudes," has gained a new level of biological relevance.

Research indicates for the first time that mutations within the DNA sequence of mitochondria impact on the energy producing capacity of these cells, with significant effects on fertility and life expectancy - and remarkably ...

A new test detects virtually any virus that infects people and animals, according to research at Washington University School of Medicine in St. Louis, where the technology was developed.

An international team of scientists from the 1000 Genomes Project Consortium has created the world's largest catalog of genomic differences among humans, providing researchers with powerful clues to help them establish why ...

Scientists have calculated more precise measurements of heritabilitythe influence of underlying genesin nine autoimmune diseases that begin in childhood. The research may strengthen researchers' abilities to better ...

Published today in Nature, the findings detail a new gene locus that can explain why, in communities where everyone is constantly exposed to malaria, some children develop severe malaria and others don't. Now, researchers ...

In recent years, University of Utah biologists showed that when wild-type mice compete in seminatural "mouse barns" for food, territory and mates, they can suffer health problems not revealed by conventional toxicity tests ...

An international study of nearly 70,000 women has identified more than forty regions of the human genome that are involved in governing at what age a woman goes through the menopause. The study, led by scientists at the Universities ...

Cells of multicellular organisms contain identical genetic material (the genome) yet can have drastic differences in their structural arrangements and functions. This variation of the distinct cell types comes from the differential ...

Using a genome-wide association study, EPFL scientists have identified subtle genetic changes that can cause substantial differences to how we fight viral infections.

Mitochondria are not only the power plants of our cells, these tiny structures also play a central role in our physiology. Furthermore, by enabling flexible physiological responses to new environments, mitochondria have helped ...

A genetic variant near the KLF14 gene regulates hundreds of genes that govern how and where women's bodies store fat, which affects their risk of developing Type 2 diabetes, according to research presented at the American ...

Progeria, a premature aging disease, is the research focus of Roland Foisner's team at the Max F. Perutz Laboratories of the University of Vienna and the Medical University of Vienna. Children suffering from progeria die ...

Tourists spending a recuperative holiday on the Italian coast may be envious of the regenerative abilities of locally found flatworm Macrostomum lignano. Named for its discovery near the Italian beach town of Lignano Sabbiadoro, ...

Some research has suggested that omega-3 fatty acids, abundant in fish oils, can relieve inflammation in Crohn's disease. But a new study using software developed by Duke scientists hints that we should be paying closer attention ...

A 'gene signature' that could be used to predict the onset of diseases, such as Alzheimer's, years in advance has been developed in research published in the open access journal Genome Biology.

An international team of scientists led from Sweden's Karolinska Institutet has for the first time mapped all the genes that are activated in the first few days of a fertilized human egg. The study, which is being published ...

A single stem cell has the potential to generate an animal made of millions of different types of cells. Some cancers contain stem-like but abnormal cells that can act like mini factories to rapidly churn out not only more ...

Find more news articles via sort by date page

See more here:

Genetics News - Genetics Science, Genetics Technology, Genetics

Genetics – Biology -Online Dictionary

Genetics

(Science: study) The study of the patterns of inheritance of specific traits. Relating to genes and genetic information. Also known as heredity. Modern theories explain how traits are passed down from parent to offspring. The first to test this theory was gregor mendel, a monk from Austria who tried to explain why some pea plants were short and some were tall, but none were in between. He placed nets over the plants so no bees or flies could pollinate the plants. Pea plants are one of the few plants capable of self pollination, so Mendel tried this with short plants and all were short, so he expected that the same thing would happen with the tall plants. But when he tried it, 75% were tall and 25% were short. This was when he used a punnett Square. A punnett Square is a model used to predict the possible outcomes of offspring.

Continued here:

Genetics - Biology -Online Dictionary