Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 12101220 (2020).
Article ADS CAS PubMed PubMed Central Google Scholar
Shen-Orr, S. S. & Furman, D. Variability in the immune system: of vaccine responses and immune states. Curr. Opin. Immunol. 25, 542547 (2013).
Article CAS PubMed PubMed Central Google Scholar
Yofe, I., Dahan, R. & Amit, I. Single-cell genomic approaches for developing the next generation of immunotherapies. Nat. Med. 26, 171177 (2020).
Article CAS PubMed Google Scholar
Banchereau, R., Cepika, A.-M. & Pascual, V. Systems approaches to human autoimmune diseases. Curr. Opin. Immunol. 25, 598605 (2013).
Article CAS PubMed PubMed Central Google Scholar
Davis, M. M., Tato, C. M. & Furman, D. Systems immunology: just getting started. Nat. Immunol. 18, 725732 (2017).
Article CAS PubMed PubMed Central Google Scholar
Germain, R. N., Meier-Schellersheim, M., Nita-Lazar, A. & Fraser, I. D. C. Systems biology in immunology: a computational modeling perspective. Annu. Rev. Immunol. 29, 527585 (2011).
Article CAS PubMed PubMed Central Google Scholar
Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 11031116 (2020). This work pioneered paired sequencing of chromatin accessibility and transcriptome in single cells (SHARE-seq).
Article CAS PubMed PubMed Central Google Scholar
Sthl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 7882 (2016). This work pioneered spatially resolved transcriptomics.
Article ADS PubMed Google Scholar
Regev, A. et al. The Human Cell Atlas. eLife https://doi.org/10.7554/eLife.27041 (2017).
Domnguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).
Article PubMed PubMed Central Google Scholar
HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187192 (2019).
Article ADS CAS Google Scholar
Martin, F. J. et al. Ensembl 2023. Nucleic Acids Res. 51, D933D941 (2023).
Article CAS PubMed Google Scholar
UniProt Consortium. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523D531 (2023).
Article Google Scholar
Trei, D. et al. Integrated intra and intercellular signaling knowledge for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021). This work introduces a comprehensive meta-resource that collects data from over a hundred databases, including, for example, protein interaction networks, ligandreceptor annotations and protein complex information.
Article PubMed PubMed Central Google Scholar
Szklarczyk, D. et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380D384 (2016).
Article CAS PubMed Google Scholar
Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 13631375 (2019).
Article CAS PubMed PubMed Central Google Scholar
Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 9, 20 (2018).
Article ADS PubMed PubMed Central Google Scholar
Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell-cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 7188 (2021).
Article CAS PubMed Google Scholar
Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494515 (2023).
Article CAS PubMed Google Scholar
Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695713 (2023).
Article CAS PubMed Google Scholar
Bonaguro, L. et al. A guide to systems-level immunomics. Nat. Immunol. 23, 14121423 (2022).
Article CAS PubMed Google Scholar
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 18881902 (2019).
Article CAS PubMed PubMed Central Google Scholar
Heumos, L. et al. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 24, 550572 (2023).
Article CAS PubMed Google Scholar
Amezquita, R. A. et al. Orchestrating single-cell analysis with Bioconductor. Nat. Methods 17, 137145 (2020).
Article CAS PubMed Google Scholar
Gene Ontology Consortium et al. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 51, D587D592 (2023).
Article CAS PubMed Google Scholar
Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687D692 (2022).
Article CAS PubMed Google Scholar
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 1554515550 (2005).
Article ADS CAS PubMed PubMed Central Google Scholar
Vremo, L., Nielsen, J. & Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 41, 43784391 (2013).
Article PubMed PubMed Central Google Scholar
Badia-I-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform. Adv. 2, vbac016 (2022).
Article PubMed PubMed Central Google Scholar
Hosokawa, H. & Rothenberg, E. V. How transcription factors drive choice of the T cell fate. Nat. Rev. Immunol. 21, 162176 (2021).
Article CAS PubMed Google Scholar
Kawasaki, T. & Kawai, T. Toll-like receptor signaling pathways. Front. Immunol. 5, 461 (2014).
Article PubMed PubMed Central Google Scholar
Saini, A., Ghoneim, H. E., Lio, C. -W. J., Collins, P. L. & Oltz, E. M. Gene regulatory circuits in innate and adaptive immune cells. Annu. Rev. Immunol. 40, 387411 (2022).
Article CAS PubMed PubMed Central Google Scholar
Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database 2015, bav095 (2015).
Article PubMed PubMed Central Google Scholar
Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212W224 (2019).
Article CAS PubMed PubMed Central Google Scholar
Mller-Dott, S. et al. Expanding the coverage of regulons from high-confidence prior knowledge for accurate estimation of transcription factor activities. Nucleic Acids Res. 51, 1093410949 (2023).
Article PubMed PubMed Central Google Scholar
Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).
Article CAS PubMed PubMed Central Google Scholar
Zeitlinger, J. Seven myths of how transcription factors read the cis-regulatory code. Curr. Opin. Syst. Biol. 23, 2231 (2020).
Article PubMed PubMed Central Google Scholar
Fiers, M. W. E. J. et al. Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genomics 17, 246254 (2018).
Article CAS PubMed PubMed Central Google Scholar
Chen, S. & Mar, J. C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics 19, 232 (2018).
Article PubMed PubMed Central Google Scholar
Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147154 (2020).
Article CAS PubMed PubMed Central Google Scholar
Badia-I-Mompel, P. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 24, 739754 (2023).
Article CAS PubMed Google Scholar
Wayman, J. A. et al. An atlas of gene regulatory networks for memory CD4+ T cells in youth and old age. Preprint at BioRxiv https://doi.org/10.1101/2023.03.07.531590 (2023).
Chowdhary, K. & Benoist, C. A variegated model of transcription factor function in the immune system. Trends Immunol. 44, 530541 (2023).
Article CAS PubMed Google Scholar
Bravo Gonzlez-Blas, C. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Nat. Methods 20, 13551367 (2023).
Article PubMed PubMed Central Google Scholar
Kramer, B. A., Sarabia Del Castillo, J. & Pelkmans, L. Multimodal perception links cellular state to decision-making in single cells. Science 377, 642648 (2022).
Article ADS CAS PubMed Google Scholar
Weidemller, P., Kholmatov, M., Petsalaki, E. & Zaugg, J. B. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21, e2000034 (2021).
Article PubMed Google Scholar
Deribe, Y. L., Pawson, T. & Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 17, 666672 (2010).
Article CAS PubMed Google Scholar
Lun, X. -K. & Bodenmiller, B. Profiling cell signaling networks at single-cell resolution. Mol. Cell. Proteom. 19, 744756 (2020).
Article CAS Google Scholar
Dugourd, A. & Saez-Rodriguez, J. Footprint-based functional analysis of multiomic data. Curr. Opin. Syst. Biol. 15, 8290 (2019).
Article PubMed PubMed Central Google Scholar
Rydenfelt, M., Klinger, B., Klnemann, M. & Blthgen, N. SPEED2: inferring upstream pathway activity from differential gene expression. Nucleic Acids Res. 48, W307W312 (2020).
Article CAS PubMed PubMed Central Google Scholar
Jiang, P. et al. Systematic investigation of cytokine signaling activity at the tissue and single-cell levels. Nat. Methods 18, 11811191 (2021). This work introduced a comprehensive resource describing how cytokines affect gene expression, which can be used to infer cytokine activity from transcriptomics data.
See original here:
Integrating single-cell multi-omics and prior biological knowledge for a functional characterization of the immune system - Nature.com