Nrskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 3746 (2009).
Article Google Scholar
Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178183 (2020).
Article Google Scholar
Ma, X., Li, Z., Achenie, L. E. K. & Xin, H. Machine-learning-augmented chemisorption model for CO2 electroreduction catalyst screening. J. Phys. Chem. Lett. 6, 35283533 (2015).
Article Google Scholar
Cohen, N. & Benson, S. W. Estimation of heats of formation of organic compounds by additivity methods. Chem. Rev. 93, 24192438 (1993).
Article Google Scholar
Eigenmann, H. K., Golden, D. M. & Benson, S. W. Revised group additivity parameters for the enthalpies of formation of oxygen-containing organic compounds. J. Phys. Chem. 77, 16871691 (1973).
Article Google Scholar
Benson, S. W. & Buss, J. H. Additivity rules for the estimation of molecular properties. thermodynamic properties. J. Chem. Phys. 29, 546572 (1958).
Article Google Scholar
Benson, S. W. IIIBond energies. J. Chem. Educ. 42, 502 (1965).
Article Google Scholar
Benson, S. W. et al. Additivity rules for the estimation of thermochemical properties. Chem. Rev. 69, 279324 (1969).
Article Google Scholar
Sabbe, M. K. et al. Group additive values for the gas phase standard enthalpy of formation of hydrocarbons and hydrocarbon radicals. J. Phys. Chem. A 109, 74667480 (2005).
Article Google Scholar
Shustorovich, E. The bond-order conservation approach to chemisorption and heterogeneous catalysis: applications and implications. Adv. Catal. 37, 101163 (1990).
Google Scholar
Garca-Muelas, R. & Lpez, N. Collective descriptors for the adsorption of sugar alcohols on Pt and Pd(111). J. Phys. Chem. C 118, 1753117537 (2014).
Article Google Scholar
Garca-Muelas, R. & Lpez, N. Statistical learning goes beyond the d-band model providing the thermochemistry of adsorbates on transition metals. Nat. Commun. 10, 4687 (2019).
Article Google Scholar
Salciccioli, M., Chen, Y. & Vlachos, D. G. Density functional theory-derived group additivity and linear scaling methods for prediction of oxygenate stability on metal catalysts: adsorption of open-ring alcohol and polyol dehydrogenation intermediates on Pt-based metals. J. Phys. Chem. C 114, 2015520166 (2010).
Article Google Scholar
Wittreich, G. R. & Vlachos, D. G. Python group additivity (pGrAdd) software for estimating species thermochemical properties. Comput. Phys. Commun. 273, 108277 (2022).
Article Google Scholar
Gu, G. H. et al. Group additivity for aqueous phase thermochemical properties of alcohols on Pt(111). J. Phys. Chem. C 121, 2151021519 (2017).
Article Google Scholar
Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Theory-guided machine learning finds geometric structureproperty relationships for chemisorption on subsurface alloys. Chem 6, 31003117 (2020).
Article Google Scholar
Esterhuizen, J. A., Goldsmith, B. R. & Linic, S. Interpretable machine learning for knowledge generation in heterogeneous catalysis. Nat. Catal. 5, 175184 (2022).
Article Google Scholar
Andersen, M. & Reuter, K. Adsorption enthalpies for catalysis modeling through machine-learned descriptors. Acc. Chem. Res. 54, 27412749 (2021).
Article Google Scholar
Gu, G. H., Lee, M., Jung, Y. & Vlachos, D. G. Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility. Nat. Commun. 13, 2087 (2022).
Article Google Scholar
Gu, G. H. et al. Practical deep-learning representation for fast heterogeneous catalyst screening. J. Phys. Chem. Lett. 11, 31853191 (2020).
Article Google Scholar
Back, S. et al. Convolutional neural network of atomic surface structures to predict binding energies for high-throughput screening of catalysts. J. Phys. Chem. Lett. 10, 44014408 (2019).
Article Google Scholar
Omidvar, N. et al. Interpretable machine learning of chemical bonding at solid surfaces. J. Phys. Chem. Lett. 12, 1147611487 (2021).
Article Google Scholar
Sanchez-Lengeling, B., Reif, E., Pearce, A & Wiltschko, A. B. A gentle introduction to graph neural networks. Distill https://doi.org/10.23915/distill.00033 (2021).
Mercado, R. et al. Graph networks for molecular design. Mach. Learn. Sci. Technol. 2, 025023 (2021).
Article Google Scholar
Zhou, J. et al. Graph neural networks: a review of methods and applications. AI Open 1, 5781 (2020).
Article Google Scholar
Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Processing Systems Vol. 28 (eds Cortes, C. et al.) (Curran Associates, 2015).
Reiser, P. et al. Graph neural networks for materials science and chemistry. Commun. Mater. 3, 93 (2022).
Article Google Scholar
Schtt, K. T., Sauceda, H. E., Kindermans, P. J., Tkatchenko, A. & Mller, K. R. SchNeta deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
Article Google Scholar
Gilmer, J., Schoenholz. S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning: Proc. Machine Learning Research Vol. 70 (eds Precup, D. & Teh, Y. W.) 12631272 (PMLR, 2017).
Zhang, D., Xia, S. & Zhang, Y. Accurate prediction of aqueous free solvation energies using 3D atomic feature-based graph neural network with transfer learning. J. Chem. Inf. Model. 62, 18401848 (2022).
Article Google Scholar
Schtt, K., Unke, O. & Gastegger, M. Equivariant message passing for the prediction of tensorial properties and molecular spectra. In Proc. 38th International Conference on Machine Learning: Proc. Machine Learning Research Vol. 139 (eds Meila, M. & Zhang, T.) 93779388 (PMLR, 2021).
Xie, T. & Grossman, J. C. Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Phys. Rev. Lett. 120, 145301 (2018).
Article Google Scholar
Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 35643572 (2019).
Article Google Scholar
Chanussot, L. et al. Open Catalyst 2020 (OC20) dataset and community challenges. ACS Catal. 11, 60596072 (2021).
Article Google Scholar
Tran, R. et al. The Open Catalyst 2022 (OC22) dataset and challenges for oxide electrocatalysis. ACS Catal. 13, 30663084 (2023).
Article Google Scholar
Gasteiger, J., Gross, J. & Gnnemann, S. Directional message passing for molecular graphs. Preprint at https://arxiv.org/abs/2003.03123 (2020).
Kolluru, A. et al. Transfer learning using attentions across atomic systems with graph neural networks (TAAG). J. Chem. Phys. 156, 184702 (2022).
Article Google Scholar
Ghanekar, P. G., Deshpande, S. & Greeley, J. Adsorbate chemical environment-based machine learning framework for heterogeneous catalysis. Nat. Commun. 13, 5788 (2022).
Article Google Scholar
Xu, W., Reuter, K. & Andersen, M. Predicting binding motifs of complex adsorbates using machine learning with a physics-inspired graph representation. Nat. Comput. Sci. 2, 443450 (2022).
Article Google Scholar
Gu, G. H., Plechac, P. & Vlachos, D. G. Thermochemistry of gas-phase and surface species via LASSO-assisted subgraph selection. React. Chem. Eng. 3, 454466 (2018).
Article Google Scholar
Gasteiger, J., Becker, F. & Gnnemann, S. GemNet: universal directional graph neural networks for molecules. In Advances in Neural Information Processing Systems Vol. 34 (eds Ranzato, M.) 67906802 (Curran Associates, 2021).
Sanchez-Lengeling, B. et al. Machine learning for scent: learning generalizable perceptual representations of small molecules. Preprint at https://arxiv.org/abs/1910.10685 (2019).
Flam-Shepherd, D., Wu, T. C., Friederich, P. & Aspuru-Guzik, A. Neural message passing on high order paths. Mach. Learn. Sci. Technol. 2, 045009 (2021).
Article Google Scholar
Morandi, S., Pablo-Garca, S. & Ivkovi, . Title. FG-dataset. ioChem-BD https://doi.org/10.19061/iochem-bd-1-257 (2023).
lvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95103 (2014).
Article Google Scholar
Isayev, O. et al. Universal fragment descriptors for predicting properties of inorganic crystals. Nat. Commun. 8, 15679 (2017).
Article Google Scholar
Cordero, B. et al. Covalent radii revisited. Dalton Trans. 21, 28322838 (2008).
Article Google Scholar
Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Big data meets quantum chemistry approximations: the -machine learning approach. J. Chem. Theory Comput. 11, 20872096 (2015).
Article Google Scholar
Hamilton, W., Ying, Z. & Leskovec, J. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) (Curran Associates, 2017).
Baek, J., Kang, M. & Hwang, S. J. Accurate learning of graph representations with graph multiset pooling. Preprint at https://arxiv.org/abs/2102.11533 (2021).
Wellendorff, J. et al. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 640, 3644 (2015).
Article Google Scholar
Woller, T. et al. Performance of electronic structure methods for the description of HckelMbius interconversions in extended -systems. J. Phys. Chem. A 124, 23802397 (2020).
Article Google Scholar
Sylvetsky, N., Banerjee, A., Alonso, M. & Martin, J. M. L. Performance of localized coupled cluster methods in a moderately strong correlation regime: HckelMbius interconversions in expanded porphyrins. J. Chem. Theory Comput. 16, 36413653 (2020).
Article Google Scholar
Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403410 (2015).
Article Google Scholar
Li, Q. & Lpez, N. Chirality, rigidity, and conjugation: a first-principles study of the key molecular aspects of lignin depolymerization on Ni-based catalysts. ACS Catal. 8, 42304240 (2018).
Article Google Scholar
Visit link:
Fast evaluation of the adsorption energy of organic molecules on ... - Nature.com