Category Archives: Physiology

Mechanics of Breathing – Breathing in Joy

Mechanics of Breathing

This explanation of the physiology of breathing shows how our health improves through the conscious connected breathing that we do in Transformation Breathwork.

Humans need a continuous supply of oxygen for cellular respiration, and they must get rid of excess carbon dioxide, the poisonous waste product of this process. Gas exchange supports this cellular respiration by constantly supplying oxygen and removing carbon dioxide. The oxygen we need is derived from the Earth's atmosphere, which is 21% oxygen. This oxygen in the air is exchanged in the body by the respiratory surface. In humans, the alveoli in the lungs serve as the surface for gas exchange.

Gas exchange in humans can be divided into five steps:

Other factors involved with respiration are:

Structure of the Human Respiratory System

The Nose - Usually air will enter the respiratory system through the nostrils. The nostrils then lead to open spaces in the nose called the nasal passages. The nasal passages serve as a moistener, a filter, and to warm upthe air before it reaches the lungs. The hairs existing within the nostrils prevents various foreign particles from entering.Different air passageways and the nasal passages are covered with a mucous membrane. Many of the cells which produce the cells that make up the membrane contain cilia. Others secrete a type a sticky fluid called mucus. The mucus and cilia collect dust, bacteria, and other particles in the air. The mucus also helps in moistening the air. Under the mucous membrane there are a large number of capillaries. The blood within these capillaries helps to warm the air as it passes through the nose. The nose serves three purposes. It warms, filters, and moistens the air before it reaches the lungs. You will obviously lose these special advantages if you breath through your mouth.

Pharynx and Larynx - Air travels from the nasal passages to the pharynx, or more commonly known as the throat. When the air leaves the pharynx it passes into the larynx, or the voice box. The voice box is constructed mainly of cartilage, which is a flexible connective tissue. The vocal chords are two pairs of membranes that are stretched across the inside of the larynx. As the air is expired, the vocal chords vibrate. Humans can control the vibrations of the vocal chords, which enables us to make sounds. Food and liquids are blocked from entering the opening of the larynx by the epiglottis to prevent people from choking during swallowing.

Trachea - The larynx goes directly into the trachea or the windpipe. The trachea is a tube approximately 12 centimeters in length and 2.5 centimeters wide. The trachea is kept open by rings of cartilage within its walls. Similar to the nasal passages, the trachea is covered with a ciliated mucous membrane. Usually the cilia move mucus and trapped foreign matter to the pharynx. After that, they leave the air passages and are normally swallowed. The respiratory system cannot deal with tobacco smoke very keenly. Smoking stops the cilia from moving. Just one cigarette slows their motion for about 20 minutes. Thetobacco smokeincreases the amount of mucus in the air passages. When smokers cough, their body is attempting to dispose of the extra mucus.

Bronchi - Around the center of the chest, the trachea divides into two cartilage-ringed tubes called bronchi. Also, this section of the respiratory system is lined with ciliated cells. The bronchi enter the lungs and spread into a treelike fashion into smaller tubes calle bronchial tubes.

Bronchioles - The bronchial tubes divide and then subdivide. By doing this their walls become thinner and have less and less cartilage. Eventually, they become a tiny group of tubes called bronchioles.

Alveoli - Each bronchiole ends in a tiny air chamber that looks like a bunch of grapes. Each chamber contains many cup-shaped cavities known as alveoli. The walls of the alveoli, which are only about one cell thick, are the respiratory surface. They are thin, moist, and are surrounded by several numbers of capillaries. The exchange of oxygen and carbon dioxide between blood and air occurs through these walls. The estimation is that lungs contain about 300 million alveoli. Their total surface area would be about 70 square meters. That is 40 times the surface area of the skin. Smoking makes it difficult for oxygen to be taken through the alveoli. When the cigarette smoke is inhaled, about one-third of the particles will remain within the alveoli. There are too many particles from smoking or from other sources of air pollution which can damage the walls in the alveoli. This causes a certain tissue to form. This tissue reduces the working area of the respiratory surface and leads to the disease called emphysema.

Breathing

Breathing consists of two phases, inspiration and expiration. During inspiration, the diaphragm and the intercostal muscles contract. The diaphragm moves downwards increasing the volume of the thoracic (chest) cavity, and the intercostal muscles pull the ribs up expanding the rib cage and further increasing this volume. This increase of volume lowers the air pressure in the alveoli to below atmospheric pressure. Because air always flows from a region of high pressure to a region of lower pressure, it rushes in through the respiratory tract and into the alveoli. This is called negative pressure breathing, changing the pressure inside the lungs relative to the pressure of the outside atmosphere. In contrast to inspiration, during expiration the diaphragm and intercostal muscles relax. This returns the thoracic cavity to it's original volume, increasing the air pressure in the lungs, and forcing the air out.

External Respiration

When a breath is taken, air passes in through the nostrils, through the nasal passages, into the pharynx, through the larynx, down the trachea, into one of the main bronchi, then into smaller bronchial tubules, through even smaller bronchioles, and into a microscopic air sac called an alveolus. It is here that external respiration occurs. Simply put, it is the exchange of oxygen and carbon dioxide between the air and the blood in the lungs. Blood enters the lungs via the pulmonary arteries. It then proceeds through arterioles and into the alveolar capillaries. Oxygen and carbon dioxide are exchanged between blood and the air. This blood then flows out of the alveolar capillaries, through venuoles, and back to the heart via the pulmonary veins. For an explanation as to why gasses are exchanged here, see partial pressure.

Gas Transport

If 100mL of plasma is exposed to an atmosphere with a pO2 of 100mm Hg, only 0.3mL of oxygen would be absorbed. However, if 100mL of bloodis exposed to the same atmosphere, about 19mL of oxygen would be absorbed. This is due to the presence of haemoglobin, the main means of oxygen transport in the body. The respiratory pigment haemoglobin is made up of an iron-containing porphyron, haem, combined with the protein globin. Each iron atom in haem is attached to four pyrole groups by covalent bonds. A fifth covalent bond of the iron is attached to the globin part of the molecule and the sixth covalent bond is available for combination with oxygen. There are four iron atoms in each hemoglobin molecule and therefore four heam groups.

Oxygen Transport -

In the loading and unloading of oxygen, there is a cooperation between these four haem groups. When oxygen binds to one of the groups, the others change shape slightly and their attraction to oxygen increases. The loading of the first oxygen, results in the rapid loading of the next three (forming oxyhemoglobin). At the other end, when one group unloads it's oxygen, the other three rapidly unload as their groups change shape again having less attraction for oxygen. This method of cooperative binding and release can be seen in the dissociation curve for hemoglobin. Over the range of oxygen concentrations where the curve has a steep slope, the slightest change in concentration will cause hemoglobin to load or unload a substantial amount of oxygen. Notice that the steep part of the curve corresponds to the range of oxygen concentrations found in the tissues. When the cells in a particular location begin to work harder, e.g. during exercise, oxygen concentration dips in that location, as the oxygen is used in cellular respiration. Because of the cooperation between the haem groups, this slight change in concentration is enough to cause a large increase in the amount of oxygen unloaded.

As with all proteins, hemoglobin's shape shift is sensitive to a variety of environmental conditions. A drop in pH lowers the attraction of hemoglobin to oxygen, an effect known as the Bohr shift. Because carbon dioxide reacts with water to produce carbonic acid, an active tissue will lower the pH of it's surroundings and encourage hemoglobin to give up extra oxygen, to be used in cellular respiration. Hemoglobin is a notable molecule for it's ability to transport oxygen from regions of supply to regions of demand.

Carbon Dioxide Transport - Out of the carbon dioxide released from respiring cells, 7% dissolves into the plasma, 23% binds to the multiple amino groups of hemoglobin (Caroxyhemoglobin), and 70% is carried as bicarbonate ions. Carbon dioxide created by respiring cells diffuses into the blood plasma and then into the red blood cells, where most of it is converted to bicarbonate ions. It first reacts with water forming carbonic acid, which then breaks down into H+ and CO3-. Most of the hydrogen ions that are produced attach to hemoglobin or other proteins.

Internal Respiration

The body tissues need the oxygen and have to get rid of the carbon dioxide, so the blood carried throughout the body exchanges oxygen and carbon dioxide with the body's tissues. Internal respiration is basically the exchange of gasses between the blood in the capillaries and the body's cells.

The respiratory center is gray matter in the pons and the upper Medulla, which is responsible for rhythmic respiration. This center can be divided into an inspiratory center and an expiratory center in the Medulla, an apneustic center in the lower and midpons and a pneumotaxic center in the rostral-most part of the pons. This respiratory center is very sensitive to the pCO2 in the arteries and to the pH level of the blood.The CO2 can be brought back to the lungs in three different ways; dissolved in plasma, as carboxyhemoglobin, or as carbonic acid. That particular form of acid is almost broken down immediately by carbonic hydrase into bicarbonate and hydrogen ions. This process is then reversed in the lungs so that water and carbon dioxide are exhaled. The Medulla Oblongata reacts to both CO2 and pH levels which triggers the breathing process so that more oxygen can enter the body to replace the oxygen that has been utilized. The Medulla Oblongata sends neural impulses down through the spinal chord and into the diaphragm. The impulse contracts down to the floor of the chest cavity, and at the same time there is a message sent to the chest muscles to expand causing a partial vacuum to be formed in the lungs. The partial vacuum will draw air into the lungs.

There are two other ways the Medulla Oblongata can be stimulated. The first type is when there is an oxygen debt (lack of oxygen reaching the muscles), andthis produces lactic acid which lowers the pH level.The Medulla Oblongata is then stimulated. If the pH rises it begins a process known as the Bohr shift. The Bohr shift is affected when there are extremely high oxygen and carbon dioxide pressures present in the human body. This factor causes difficulty for the oxygen and carbon dioxide to attach to hemoglobin. When the body is exposed to higher altitudes the oxygen will not attach to the hemoglobin properly, causing the oxygen level to drop and the person will black out. This theory also applies to divers who go to great depths, and the pressure of the oxygen becomes poisonous. These pressures are known as pO2 and pCO2, or partial pressures. The second type occurswhen the major arteries in the body called theaortic and carotid bodies, sense a lack of oxygen within the blood and they send messages to the Medulla Oblongata.

Various marine mammals have been found to have adapted special abilities which help in their respiratory processes, enabling them to remain down at great depths for long periods of time. The Weddell seal possesses some amazing abilities. It only stores 5% of its oxygen in its lungs, and keeps the remaining 70% of its oxygen circulating throughout the blood stream. Humans are only able to keep a small 51% of their oxygen circulating throughout the blood stream, while 36% of the oxygen is stored in the lungs. The explanation for this is that the Weddell seal has approximately twice the volume of blood per kilogram as humans. As well, the Weddell seal's spleen has the ability to store up to 24L of blood. It is believed that when the seal dives the spleen contracts causing the stored oxygen enriched blood to enter the blood stream. Also, these seals have a higher concentration of a certain protein found within the muscles known as myoglobin, which stores oxygen. The Weddell seal contains 25% of its oxygen in the muscles, while humans only keep about 12% of their oxygen within the muscles.

Not only does the Weddell seal store oxygen for long dives, but they consume it wisely as well. A diving reflex slows the pulse, and an overall reduction in oxygen consumption occurs due to this reduced heart rate. Regulatory mechamisms reroute blood to where it is needed most (brain, spinal cord, eyes, adrenal glands, and in some cases placenta) by constricting blood flow where it is not needed (mainly in the digestive system). Blood flow is restricted to muscles during long dives and they rely on oxygen stored in their myoglobin and make their ATP from fermentation rather then from respiration.

Read the original here:

Mechanics of Breathing - Breathing in Joy

Amazon.com: Anatomy and Physiology For Dummies …

Learn about the human body from the inside out

Every year, more than 100,000 degrees are completed in biologyor biomedical sciences. Anatomy and physiology classes are requiredfor these majors and others such as life sciences andchemistry, and also for students on a pre-medtrack. These classes also serve as valuableelectives because of the importance and relevance of this subject'scontent. Anatomy and Physiology For Dummies, 2ndEdition, appeals to students and life-learners alike, as acourse supplement or simply as a guide to this intriguingfield of science.

With 25 percent new and revised content, including updatedexamples and references throughout, readers of the new edition willcome to understand the meanings of terms in anatomy and physiology,get to know the body's anatomical structures, and gain insight intohow the structures and systems function in sickness and health. * New examples, references, and case studies * Updated information on how systems function in illness and inhealth * Newest health discovers and insights into how the bodyworks

Written in plain English and packed with dozens of beautifulillustrations, Anatomy & Physiology For Dummies is yourguide to a fantastic voyage of the human body.

Link:

Amazon.com: Anatomy and Physiology For Dummies ...

Anatomy and Physiology Learning Modules – CEHD – U of M

Quiz Bowl and Timed Test were retired at the end of summer 2013. Quiz Bowl had always been buggy, as many people had pointed out, and it had become difficult to maintain. It also used technology that doesnt work on a lot of newer computers or tablets. Timed test depended on a browser add-on that both Microsoft and Apple have encouraged users to remove for security concerns. For these reasons, we took these two quizzes down at the end of the month. Thanks to everyone who has shown support for them, and we hope you continue to use the other quizzes on this site!

Looking for the Image Bank? We moved it up to the main Anatomy and Physiology page, which has all kinds of other cool resources.

Conference for High School Anatomy and Physiology Instructors - October 17 and 18, 2014 - Minneapolis, MN. Contact Murray Jensen for details.

Excerpt from:

Anatomy and Physiology Learning Modules - CEHD - U of M

Human Physiology: An Integrated Approach (7th Edition …

Fulfillment by Amazon (FBA) is a service we offer sellers that lets them store their products in Amazon's fulfillment centers, and we directly pack, ship, and provide customer service for these products. Something we hope you'll especially enjoy: FBA items qualify for FREE Shipping and .

If you're a seller, Fulfillment by Amazon can help you increase your sales. We invite you to learn more about Fulfillment by Amazon .

Read this article:

Human Physiology: An Integrated Approach (7th Edition ...

Physiology – definition of physiology by The Free Dictionary

physiology - the branch of the biological sciences dealing with the functioning of organisms accommodation - (physiology) the automatic adjustment in focal length of the natural lens of the eye adaptation - (physiology) the responsive adjustment of a sense organ (as the eye) to varying conditions (as of light) abduction - (physiology) moving of a body part away from the central axis of the body adduction - (physiology) moving of a body part toward the central axis of the body control - (physiology) regulation or maintenance of a function or action or reflex etc; "the timing and control of his movements were unimpaired"; "he had lost control of his sphincters" antagonistic muscle - (physiology) a muscle that opposes the action of another; "the biceps and triceps are antagonistic muscles" humour, humor - (Middle Ages) one of the four fluids in the body whose balance was believed to determine your emotional and physical state; "the humors are blood and phlegm and yellow and black bile" neurophysiology - the branch of neuroscience that studies the physiology of the nervous system hemodynamics - the branch of physiology that studies the circulation of the blood and the forces involved kinesiology - the branch of physiology that studies the mechanics and anatomy in relation to human movement myology - the branch of physiology that studies muscles irradiation - (physiology) the spread of sensory neural impulses in the cortex cell death, necrobiosis - (physiology) the normal degeneration and death of living cells (as in various epithelial cells) acid-base balance, acid-base equilibrium - (physiology) the normal equilibrium between acids and alkalis in the body; "with a normal acid-base balance in the body the blood is slightly alkaline" autoregulation - (physiology) processes that maintain a generally constant physiological state in a cell or organism inhibition - (physiology) the process whereby nerves can retard or prevent the functioning of an organ or part; "the inhibition of the heart by the vagus nerve" nutrition - (physiology) the organic process of nourishing or being nourished; the processes by which an organism assimilates food and uses it for growth and maintenance relaxation - (physiology) the gradual lengthening of inactive muscle or muscle fibers stimulation - (physiology) the effect of a stimulus (on nerves or organs etc.) summation - (physiology) the process whereby multiple stimuli can produce a response (in a muscle or nerve or other part) that one stimulus alone does not produce homeostasis - (physiology) metabolic equilibrium actively maintained by several complex biological mechanisms that operate via the autonomic nervous system to offset disrupting changes innervate - stimulate to action; "innervate a muscle or a nerve" irritate - excite to some characteristic action or condition, such as motion, contraction, or nervous impulse, by the application of a stimulus; "irritate the glands of a leaf" abducent, abducting - especially of muscles; drawing away from the midline of the body or from an adjacent part adducent, adducting, adductive - especially of muscles; bringing together or drawing toward the midline of the body or toward an adjacent part afferent - of nerves and nerve impulses; conveying sensory information from the sense organs to the CNS; "afferent nerves"; "afferent impulses" efferent, motorial - of nerves and nerve impulses; conveying information away from the CNS; "efferent nerves and impulses" isometric - of or involving muscular contraction in which tension increases while length remains constant isotonic - of or involving muscular contraction in which tension is constant while length changes voluntary - controlled by individual volition; "voluntary motions"; "voluntary muscles" involuntary - controlled by the autonomic nervous system; without conscious control; "involuntary muscles"; "gave an involuntary start" pressor - increasing (or tending to increase) blood pressure; "pressor reflexes" tonic - of or relating to or producing normal tone or tonus in muscles or tissue; "a tonic reflex"; "tonic muscle contraction" sympathetic - of or relating to the sympathetic nervous system; "sympathetic neurons"; "sympathetic stimulation"

Read more:

Physiology - definition of physiology by The Free Dictionary

Physiology | definition of physiology by Medical dictionary

physiology [fize-olo-je]

1. the science that treats of the functions of the living organism and its parts, and of the physical and chemical factors and processes involved.

2. the basic processes underlying the functioning of a species or class of organism, or any of its parts or processes.

cell physiology the scientific study of phenomena involved in cell growth and maintenance, self-regulation and division of cells, interactions between nucleus and cytoplasm, and general behavior of protoplasm.

morbid physiology (pathologic physiology) the study of disordered functions or of function in diseased tissues.

The science concerned with the normal vital processes of animal and vegetable organisms, especially as to how things normally function in the living organism rather than to their anatomic structure, their biochemical composition, or how they are affected by drugs or disease.

[L. or G. physiologia, fr. G. physis, nature, + logos, study]

1. the science which treats of the functions of the living organism and its parts, and of the physical and chemical factors and processes involved.

2. the basic processes underlying the functioning of a species or class of organism, or any of its parts or processes.

morbid physiology, pathologic physiology the study of disordered function or of function in diseased tissues.

1. The biological study of the functions of living organisms and their parts.

2. All the functions of a living organism or any of its parts.

physiologist n.

Etymology: Gk, physis + logos, science

1 the study of the processes and function of the human body.

The science concerned with the normal vital processes of animal and vegetable organisms, especially as to how things normally function in the living organism rather than as to their anatomic structure, their biochemical composition, or how they are affected by drugs or disease.

[L. or G. physiologia, fr. G. physis, nature, + logos, study]

n in biological sciences, study concerned with the processes and functioning of organisms.

Science concerned with normal vital processes of organisms, especially as to how things normally function in living organism rather than to their anatomic structure.

[L. or G. physiologia, fr. G. physis, nature, + logos, study]

n the study of tissue and organism behavior. The physiologic process is a dynamic state of tissue as compared with the static state of descriptive morphology (anatomy). Physiology is differentiated from descriptive morphology by the following qualifying properties: rate, direction, and magnitude. Physiologic processes are thus morphologic alterations in the three dimensions of space associated with a temporary (time) sequence. Physiologic processes relate to a wide spectrum of life activities on three levels: biochemical and biophysical activity of a subcellular nature, the activity of cells and tissues aggregated into organ systems, and multiorgan system activity as expressed in human behavior.

n the physiology related to clinical manifestations in the normal and abnormal behavior of oral structures. The principal clinical functions in which the oral structures participate are deglutition, mastication, respiration, speech, and head posture.

1. the science which deals with the functions of the living organism and its parts, and of the physical and chemical factors and processes involved.

2. the basic processes underlying the functioning of a species or class of organism, or any of its parts or processes.

the scientific study of phenomena involved in cell growth and maintenance, self-regulation and division of cells, interactions between nucleus and cytoplasm, and general behavior of protoplasm.

the study of disordered functions or of function in diseased tissues.

Read more:

Physiology | definition of physiology by Medical dictionary

Physiology – Wikipedia, the free encyclopedia

Physiology (; from Ancient Greek (physis), meaning "nature, origin", and - (-logia), meaning "study of"[1]) is the scientific study of the normal function in living systems.[2] A sub-discipline of biology, its focus is in how organisms, organ systems, organs, cells, and bio-molecules carry out the chemical or physical functions that exist in a living system.[3] Given the size of the field it is divided into, among others, animal physiology (including that of human), plant physiology, cellular physiology, microbial physiology (see microbial metabolism), bacterial physiology, and viral physiology.[3]Nobel Prize in Physiology or Medicine is awarded to those who make significant achievements in this discipline since 1901 by the Royal Swedish Academy of Sciences. In medicine, a physiologic state is one occurring from normal body function, rather than pathologically, which is centered on the abnormalities that occur in animal diseases, including humans.[4]

Physiological studies date back to ancient civilizations of India,[5][6] Egypt alongside anatomical studies but did not utilize dissections and vivisection.[7] The study of human physiology as a medical field dates back to at least 420BC to the time of Hippocrates, also known as the "father of medicine."[8] Hippocrates incorporated his belief system called the theory of humours, which consisted of four basic substance: earth, water, air and fire. Each substance is known for having a corresponding humour: black bile, phlegm, blood and yellow bile, respectively. Hippocrates also noted some emotional connections to the four humours, which Claudis Galenus would later expand on. The critical thinking of Aristotle and his emphasis on the relationship between structure and function marked the beginning of physiology in Ancient Greece. Like Hippocrates, Aristotle took to the humoral theory of disease, which also consisted of four primary qualities in life: hot, cold, wet and dry.[9] Claudius Galenus (c. ~130200AD), known as Galen of Pergamum, was the first to use experiments to probe the functions of the body. Unlike Hippocrates though, Galen argued that humoral imbalances can be located in specific organs, including the entire body.[10] His modification of this theory better equipped doctors to make more precise diagnoses. Galen also played off of Hippocrates idea that emotions were also tied to the humours, and added the notion of temperaments: sanguine corresponds with blood; phlegmatic is tied to phlegm; yellow bile is connected to choleric; and black bile corresponds with melancholy. Galen also saw the human body consisting of three connected systems: the brain and nerves, which are responsible for thoughts and sensations; the heart and arteries, which give life; and the liver and veins, which can be attributed to nutrition and growth.[10] To top it off, Galen was also the founder of experimental physiology.[11] And for the next 1,400 years, Galenic physiology was a powerful and influential tool in medicine.[10]

Jean Fernel (14971558), a French physician, introduced the term "physiology".[12]

In the 19th century, physiological knowledge began to accumulate at a rapid rate, in particular with the 1838 appearance of the Cell theory of Matthias Schleiden and Theodor Schwann. It radically stated that organisms are made up of units called cells. Claude Bernard's (18131878) further discoveries ultimately led to his concept of milieu interieur (internal environment), which would later be taken up and championed as "homeostasis" by American physiologist Walter B. Cannon in 1929. By homeostasis, Cannon meant "the maintenance of steady states in the body and the physiological processes through which they are regulated."[13] In other words, the body's ability to regulate its internal environment. It should be noted that, William Beaumont was the first American to utilize the practical application of physiology.

Initially, women were largely excluded from official involvement in any physiological society. The American Physiological Society, for example, was founded in 1887 and included only men in its ranks.[citation needed] In 1902, the American Physiological Society elected Ida Hyde as the first female member of the society.[citation needed] Hyde, a representative of the American Association of University Women and a global advocate for gender equality in education,[14] attempted to promote gender equality in every aspect of science and medicine.

Soon thereafter, in 1913, J.S. Haldane proposed that women be allowed to formally join The Society of Physiology, which had been founded in 1876.[citation needed] On 3 July 1915, six women were officially admitted into The Society. These six included Florence Buchanan, Winifred Cullis, Ruth C. Skelton, Sarah C. M. Sowton, Constance Leetham Terry, and Enid M. Tribe.[15] Male members of The Society submitted each of these women for consideration and then voted on whether or not the women's accomplishments and potential merited membership in The Society.[15]

There have been and continue to be many prominent female physiologists, including but not limited too:

1858- Joseph Lister studied the cause of blood coagulation and inflammation that resulted after previous injuries and surgical wounds. He later discovered and implemented antiseptics in the operating room, and as a result decreases death rate from surgery by a substantial amount.[4][22]

1891- Ivan Pavlov performed research on "conditional reflexes" that involved dogs' saliva production in response to a plethora of sounds and visual stimuli.[22]

In the 20th century, biologists also became interested in how organisms other than human beings function, eventually spawning the fields of comparative physiology and ecophysiology.[23] Major figures in these fields include Knut Schmidt-Nielsen and George Bartholomew. Most recently, evolutionary physiology has become a distinct subdiscipline.[24]

1910 August Krogh, in 1920 won the Nobel Prize for discovering how, in capillaries, blood flow is regulated.[22]

1954- Andre Huxley and Hugh Huxley, alongside their research team, discovered the sliding filaments in skeletal muscle, known today as the sliding filament theory.[22]

Today, and times before, physiologists continuously trying to find answers to important questions concerning how populations interact, the environment on earth, and in single cell functions.[4]

There are many ways to categorize the subdiscplines of physiology:[25]

Human physiology seeks to understand the mechanisms that work to keep the human body alive and functioning,[3] through scientific enquiry into the nature of mechanical, physical, and biochemical functions of humans, their organs, and the cells of which they are composed. The principal level of focus of physiology is at the level of organs and systems within systems. The endocrine and nervous systems play major roles in the reception and transmission of signals that integrate function in animals. Homeostasis is a major aspect with regard to such interactions within plants as well as animals. The biological basis of the study of physiology, integration refers to the overlap of many functions of the systems of the human body, as well as its accompanied form. It is achieved through communication that occurs in a variety of ways, both electrical and chemical.[citation needed]

Much of the foundation of knowledge in human physiology was provided by animal experimentation. Physiology is the study of function and is closely related to anatomy which is the study of form and structure. Due to the frequent connection between form and function, physiology and anatomy are intrinsically linked and are studied in tandem as part of a medical curriculum.[citation needed]

Go here to read the rest:

Physiology - Wikipedia, the free encyclopedia

Physiology – New World Encyclopedia

Physiology (Greek , physis, meaning "nature") can refer either to the parts or functions (mechanical, physical, and biochemical) of living organisms, or to the branch of biology that deals with the study of all the parts of living organisms and their various functions.

Since the function of a part is related to its structure, physiology naturally is related to anatomy, a term that can refer either to the internal structure and organization of an organism or any of its parts, or to the branch of biology that studies the internal structure and organization of living things.

Since the dawn of civilization, human beings have had a curiosity about nature and about the human body. In their efforts to better understand the mysteries of life, one key area is physiology. Most fields of biological endeavorbotany, zoology, embryology, cytology, etc.include a study of function and thus of physiology. The science of medicine is particularly tied to the study of human physiology.

Physiology has traditionally been divided into plant physiology and animal physiology, but the principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells.

The field of animal physiology extends the tools and methods of human physiology to non-human animal species. Plant physiology borrows techniques from both fields. Physiology's scope of subjects is at least as diverse as the tree of life itself. Due to this diversity of subjects, research in animal physiology tends to concentrate on understanding how physiological traits changed throughout the history of animals.

Other major branches of scientific study with roots grounded in physiology research include biochemistry, biophysics, paleobiology, biomechanics, and pharmacology.

The history of physiology can be traced back at least as far as Greek natural philosophy. The study of anatomy, traced in history of anatomy reveals some of the early history of human physiology, as the study of human anatomy revealed functions as well.

In the eighth century C.E., it was Abu Bakr Al Razi (popularly known as Rhazes), a Persian physician and philosopher who described certain physiological parameters when he went to establish a hospital at Baghdad. Razi was followed by Al Kindi, who wrote a treatise on human physiology.

Anatomist William Harvey described blood circulation in the seventeenth century, providing the beginning of experimental physiology.

Herman Boerhaave is sometimes referred to as the father of physiology due to his exemplary teaching in Leiden and his textbook Institutiones medicae (1708).

In the United States, the first physiology professorship was founded in 1789 at the College of Philadelphia, and in 1832, Robert Dunglison published the first comprehensive work on the subject, Human Physiology (Encyclopedia of American History, 2007). In 1833, William Beaumont published a classic work on digestive function.

Among areas that have show significant growth in the twentieth century are endocrinology (study of function of hormones) and neurobiology (study of function of nerve cells and the nervous system).

Human physiology is the most complex area in physiology. This area has several subdivisions that overlap with each other. Many animals have similar anatomy to humans and share many of these areas.

Plant physiology has differing subdivisions. For example, since plants do not have muscles and nerves, neither myophysiology nor neurophysiology applies.

All links retrieved April 27, 2015.

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

Note: Some restrictions may apply to use of individual images which are separately licensed.

Excerpt from:

Physiology - New World Encyclopedia

physiology | Britannica.com

Physiology,study of the functioning of living organisms, animal or plant, and of the functioning of their constituent tissues or cells.

The word physiology was first used by the Greeks around 600 bc to describe a philosophical inquiry into the nature of things. The use of the term with specific reference to vital activities of healthy humans, which began in the 16th century, also is applicable to many current aspects of physiology. In the 19th century, curiosity, medical necessity, and economic interest stimulated research concerning the physiology of all living organisms. Discoveries of unity of structure and functions common to ... (100 of 5,385 words)

See the original post here:

physiology | Britannica.com