Category Archives: Physiology

Study points to health disparities among former NFL players – Harvard Gazette

A career in professional football may yield an array of health benefits that extend beyond playing years: NFL players engage in vigorous training, tend to be more educated than other men in the U.S. and have higher median incomes than most fellow Americans all factors associated with better overall health.

But new research from Harvard Medical School and the Harvard T.H. Chan School of Public Health suggests that even these advantages may not be enough to neutralize persistent gaps in health outcomes among Black, white, and players of other racial backgrounds.

The analysis, based on self-reports among former NFL players, found that Black players were significantly more likely than white players to experience diminished quality of life due to impaired physical function, pain, cognitive troubles, depression, and anxiety. In four of five health outcomes, the gaps were greatest between Black and white former players.

The findings, published Aug. 4 in Annals of Epidemiology, are based on a survey of 3,794 former NFL players, ages 24 to 89, conducted as part of the ongoing Football Players Health Study at Harvard University, a research initiative that encompasses a constellation of studies designed to evaluate various aspects of players health across the lifespan.

The researchers categorized former players into three groups based on self-identified race: Black (1,423), white (2,215), and Hawaiian and other races (109) a group that included American Indian/Alaskan Native, Native Hawaiian/Pacific Islander and Asian, among others. The researchers then compared self-reported symptoms in five categories: physical functioning, pain, cognitive function, depression, and anxiety.

The analysis showed that Black former NFL players were 50 percent more likely than white former players to have pain that interfered with daily activities, as well as depression and anxiety. Black former players were 36 percent more likely to have cognitive symptoms including memory deficits and attention problems that impacted their quality of life. Black former players were also nearly 90 percent more likely to report impaired physical functioning, compared with their white peers.

The study found that other players of color, including Native Hawaiians, had a higher risk for all categories of adverse health outcomes, except impaired physical functioning.

Our analysis points to persistent and dramatic gaps in health outcomes among former NFL players that are particularly pronounced among Black athletes and also present among other Hawaiians, Native Americans and Asian players, said study lead author Andrea Roberts, senior research scientist at the Harvard T.H. Chan School of Public Health.

These gaps echo well-documented health disparities in the general population and demand both short-term interventions and long-term solutions.

Marc Weisskopf

Our findings underscore the urgent need to develop public health interventions and policies that address underlying systemic factors that give rise to such disparities both among former athletes and in the general population, Roberts added.

To examine the role of other factors that may affect health outcomes, the researchers also looked at the number of seasons played in the NFL, position played, concussion symptoms, surgeries, body-mass index, use of performance-enhancing drugs, lifestyle habits including drinking and smoking, as well as pain medication use. The differences persisted even when the researchers accounted for the possible influence of these factors.

Next, the researchers examined whether differences in health varied by a players age, as a surrogate marker for diversity and equity in the era that they played in. Although younger players of color were in the NFL during a period marked by greater diversity and greater equity, their risk for adverse health outcomes remained the same as that of older players.

The researchers suggested that factors such as discrimination prior to, during, or following a players time in the NFL could account for the disparities. Systemic and structural racism has been linked with worse mental and physical health and higher mortality. Additionally, past research indicates that nonwhites are more likely to receive lower quality health care than whites.

We tend to think that elite athletes may be shielded from health inequities, but our findings counter that notion and reveal important differences in quality of life among former athletes, said study senior author Marc Weisskopf, professor of environmental epidemiology and physiology at the Harvard Chan School. These gaps echo well-documented health disparities in the general population and demand both short-term interventions and long-term solutions.

As we begin to unpack the complexities around these health disparities between white and nonwhite players, we can begin to see the confluence of challenges that extend beyond the socioeconomic benefits of playing in the NFL, said study co-author Herman Taylor, a co-investigator of the Football Players Health Study and director of the Cardiovascular Research Institute at the Morehouse School of Medicine. Meaningful solutions to systemic inequities that fuel health disparities will not emerge overnight. In the meantime, we urge players to consult their physicians about the health concerns weve outlined in this study that might impact their quality of life.

The research was funded by the National Football League Players Association (NFLPA).

Other investigators on the study included Alicia Whittington, Frank Speizer, Aaron Baggish, Ross Zafonte, and Alvaro Pascual-Leone.

Sign up for daily emails to get the latest Harvardnews.

See original here:
Study points to health disparities among former NFL players - Harvard Gazette

Fifteen students and alumni offered Fulbright Awards to teach and conduct research abroad – UMN News

Fifteen students and recent graduates of the University of Minnesota have been offered grants to study and teach abroad during the 2020-21 academic year by the Fulbright U. S. Student Program and another has been designated as an alternate. The Fulbright Program was created and funded by Congress in 1946 to promote international good will through the exchange of students and scholars in all areas of education, culture, and science. The program awards approximately 1900 grants annually in all fields of study, and operates in more than 140 countries worldwide.

Here are this year's recepients:

Clara Bartnik, a 20 graduate in Economics from Eden Prairie with minors in Spanish and Teaching English as a Second Language, will spend the coming year as an English Teaching Assistant at a university in Turkey. In high school, she developed an interest in the Middle East, especially the economic history of Turkey and Central Asia. On campus, she continued her studies in Spanish and became the Community Advisor for La Casa de Espaol, but she wanted to add a language that fit her geographical interests. In her second year, she applied for a Critical Language Scholarship and spent last summer studying Turkish in Baku, Azerbaijan. She returned to campus and wrote her senior research project on customs agreements between Turkey and the EU, and after her Fulbright year she plans to do further studies in economic development and international relations in the region.

Molly Bergum of South Range, Wisconsin, graduated this year with majors in Plant Biology and Biology, Society & Environment. She has been offered a Fulbright to conduct research and complete a graduate degree at the University of East Anglia in Norwich, England. She will work with Dr. Matthew Moscou at the Sainsbury Laboratory, one of the worlds leading centers of crop research, on genetic disease resistance in wild barley, a plant with potential to address food security challenges in the face of climate change. Molly has completed research at the University of Minnesota with Professors Brian Steffenson and James Luby in the College of Food, Agricultural and Natural Resource Sciences, and she was the recipient of an Ernest Hollings Scholarship from the National Oceanic and Atmospheric Administration. In the future, she would like to conduct research on crop genetics with the Department of Agriculture.

Sofia Cerkvenik of St. Paul has been awarded a Fulbright grant to conduct research in Peru. A 18 graduate with a B.A. in History and 19 graduate with a M.Ed. in Social Studies, Sofia will study the impact of soccer programs for girls and women on other areas of their lives, particularly academic opportunity and performance. She hopes that her research will help to identify and overcome obstacles to equitable education and inform her own future teaching practice. Sofia received two Critical Language Scholarships to study Chinese and spent a semester studying abroad in Peru. On campus, she was a History Day mentor and the Founder and President of the Latinx International Student Association.

T.J. Davies, a 20 graduate from Milwaukee, Wisconsin, will teach English in South Korea. Her interest in the Korean language began with a childhood neighbor whose mother spoke no English but provided delicious Korean snacks. T.J. was determined to overcome the language barrier and has been very involved in Korean language and cultural activities ever since, including leading KTALK, a Korean language student group on campus. In 2018, she spent a summer studying abroad in Seoul, and she looks forward to a longer and more immersive stay in the country. On campus, she has also worked in the Minnesota English Language Project as a tutor for international students, and she plans to complete a graduate degree in education after her Fulbright year.

Jacob Dixon, a 20 graduate in Spanish and Portuguese from Waconia, will spend next year in Mozambique studying the development of Marrabenta music since the end of the civil war. A trumpet player who has performed with various ensembles on and off campus, he plans to engage in his investigation as both a musician and scholar. Working with Professor Elusio dos Prazeres Viegas Filipe at the University of Eduardo Modlane, he will conduct archival research in Maputo as well as interviews with musicians active in the 1990s. At the University of Minnesota, Jacob has studied with professors Ana Paula Ferreira and Sophia Beal and was awarded a Foreign Language and Area Studies scholarship to study Portuguese in Mozambique during the summer of 2018. After his Fulbright experience, he plans to continue graduate studies in Spanish and Portuguese.

Caroline Fidan Tyler Doenmez is a Ph.D. candidate in sociocultural Anthropology with a graduate minor in American Indian and Indigenous Studies. Doenmez is of Zaza Kurdish and European descent and was raised in Dublin, New Hampshire. She has been offered a Fulbright grant to Canada to study the reclamation of birth by Indigenous doulas in Winnipeg. Throughthe concept of Indigenous women as "water carriers,"her project looks to the Red River to explore the link between doula care and addressing violence against Indigenous women.She is especially interested in documentinghow understanding birth as embedded in a wider set of relationships works to revitalize Indigenous ontologies that emphasizethe protection of both women and water as givers and sustainers of life.Doenmez received a B.A. from Smith College in 2009 and an M.A. from Columbia University in 2015.

Alexandra Glasford of Cedarburg, Wisconsin, will be an English Teaching Assistant in Italy. A Global Studies and Italian major who graduated in May, Ally spent her junior year studying abroad in Bologna, where she also served as a teaching assistant in a Middle School. At the University of Minnesota, she was a mentor in the international buddy program, a member of the swing dance club, and a group leader with St. Pauls Outreach. She also worked as a camp counselor with the Concordia Language Villages and was awarded a Foreign Language and Area Studies Scholarship to support coursework in Italian. After her time in Italy, she plans to attend law school.

Matthew Her of North St. Paul, a 19 graduate with majors in Linguistics and Asian Languages and Literatures and a minor in Teaching English as a Second Language, will be a Fulbright English Teaching Assistant in Thailand. Currently an AmeriCorps fellow in Milwaukee, Matthew has worked as a language tutor, camp counsellor, and study skills coach with various organizations in the Twin Cities. With the support of a Freeman-Asia scholarship, he spent a semester abroad in South Korea, and as a Gilman Scholar, he spent a summer in China. In Thailand, he will retrace the journey of his own parents, who passed through that country as Hmong refugees from Laos. After his Fulbright year, Matthew plans to complete a Masters degree in Youth Development Leadership and work in education and youth support services.

Austin Kraft, a 20 graduate with majors in Mathematics and Linguistics will travel to Indonesia to conduct a comparative study of grammatical binding in three Indonesian languages. The widespread presence of binding in human language has been considered evidence for a universal human grammar, but this may be challenged by differences between these related languages. Working with Professor Yanti at Universitas Katolik Indonesia Atma Jaya, Austin will conduct fieldwork at three different locations to elicit and document native speakers' binding patterns. He has previously studied Indonesian with a Critical Language Scholarship in the summer of 2018 and has completed research with Professor Hoii Ling Soh at the University of Minnesota. After his Fulbright year, he plans to complete a PhD in Computational Linguistics.

Zetta Mason, a 20 graduate with a B.A. in Anthropology and a B.S. in Sociology, will travel to Albania to study how the justice system and the larger community understand and combat domestic violence. She will be affiliated with the Partner pr Fmijt, an NGO that works to promote childrens rights and gender equality. At the University of Minnesota, she has completed related research in both of her degree programs, investigating the issues of jurisdiction and sexual violence against Indigenous women and gender-based violence against young men and boys in Darfur. A native of Boulder, Colorado, Zetta also interned with the U.S. District Attorney in Denver, where she contributed to policy recommendations to combat recidivism in domestic violence. As a member of the Universitys track and cross-country teams, she is a three-time Big Ten Distinguished Scholar and a co-creator of a training program for sexual violence intervention. After her Fulbright experience, she plans to attend law school.

Emily McCarthy graduated in May with a major in Comparative Literature and Cultural Studies and a minor in Arabic. A graduate of Osseo High School, she spent a year studying to become a pastry chef before beginning her studies at the University of Minnesota. At the same time she began teaching at the Adult Basic Education Center in Columbia Heights, where she helped a largely immigrant population complete high school education, complete citizenship exams, and gain admissions to colleges and universities. In Bahrain, she will serve as an English Teaching Assistant and plans to participate in local arts and literature while developing her Arabic skills. In the future, she plans to complete a Ph.D. in Arabic.

Nabila Mohamed graduated in 2017 with a degree in Physiology and has been working as a research associate and coordinator with the Family Matters study of child obesity at the Medical School. Next year, she will travel to the United Arab Emirates and participate in the Healthy Future study with Dr. Raghib Ali, Director of the Public Health Research Center at NYU Abu Dhabi. She will use data from the study to investigate the social determinants of metabolic and cardiovascular health in a region that has seen revolutionary changes in wealth and diet over the last fifty years. The daughter of Somali refugees who was born in Kenya, Nabila graduated from St. Paul Central High School.

Jamie Mosel, a PhD candidate in Natural Resources Science and Management, studies the responses of forests to climate change, and ways to adapt forest management to cope with climate change. She will spend the year in Japan where she will research forest health, tree physiology, and forest management practices related to climate change in Hokkaido. Her research in Japan builds on her PhD work on adaptive management and climate change responses of tree species in northern Minnesota. Jamie also hopes to contextualize this work by highlighting the importance of Indigenous rights and sovereignty in forest management practices. A graduate of St. Olaf College with majors in History and Biology, Jamies goal is to contribute to our understanding of global forest health and help foster mutual relationships towards supporting healthy future forests locally and internationally.

Corrie Nyquist is a PhD student in the CFANS Department of Entomology. Her graduate research in Minnesota focuses on the winter activity and community structure of a group of aquatic flies known as midges within the family Chironomidae. Her cold weather interest has also taken her to Iceland where for the past two summers she has conducted research on the impacts of warming air temperatures on Palearctic midge species emerging from hot and cold springs. Corrie was recently awarded a Fulbright-NSF Arctic Research Grant for research pertaining to arctic systems. Through this grant, she will conduct some of the first formal investigations of winter active midges in Iceland, investigating their species diversity, life history and responses to climate change.

Ka Z. Vang, a 2016 graduate with a degree in Elementary Education and current graduate student in Youth Development Leadership, was offered a Fulbright English Teaching Assistantship in Thailand but decided to turn it down.

Senior Devon Severson (Political Science and Global Studies) and graduate students Meta Nagel (MEd, Second Language Education), Marie Schaedel (PhD, Plant Science), and Vanessa Voller (PhD, Comparative/International Development Education) have all been named as alternates for Fulbright awards.

213 students and alumni of the University of Minnesota, Twin Cities have been awarded Fulbrights in the last 20 years. Current undergraduates and recent graduates who are interested in applying for the Fulbright U.S. Student Program should contact Timothy Jones in the Office of National and International Scholarships, natschol@umn.edu or 612-624-5522. Graduate students should contact Toni Abts in the Graduate Fellowships Office, gradfellow@umn.edu or 612-625-7579.

Read more:
Fifteen students and alumni offered Fulbright Awards to teach and conduct research abroad - UMN News

Dissociation of broadband high-frequency activity and neuronal firing in the neocortex – Science Advances

INTRODUCTION

Broadband high-frequency activity (BHA; 70 to 150 Hz), also known as high gamma, a key analytic signal in human intracranial recordings, is often assumed to reflect local neural firing [multiunit activity (MUA)]. Accordingly, BHA has been used to study neuronal population responses reflecting auditory (1, 2), visual (35), language (6), mnemonic (710), and cognitive control (11, 12). BHA is arguably the electrophysiological measure best correlated with the blood oxygenation leveldependent (BOLD) signal in functional magnetic resonance imaging (fMRI) (13, 14). However, beyond the fact that BHA correlates with neuronal spiking (13, 1517), its precise physiology remains unknown; specifically, the neuronal populations and physiological processes generating BHA have not been identified. Here, we show that BHA can be dissociated from MUA in the primary visual and auditory cortex. Analyzing laminar multielectrode data recorded in monkeys, we found a bimodal distribution of stimulus-evoked BHA across the layers of cortex: an early-deep and late-superficial response. The early-deep BHA had a clear spatial (laminar) and temporal association with local MUA; however, the spatiotemporal overlap of MUA with the late-superficial BHA signal was much less clear. In many cases, particularly in V1 (70%), supragranular sites showed a strong BHA in lieu of any detectable increase in MUA. Because of volume conduction, BHAs from both the early-deep and the late-superficial generators contribute to the field potential (FP) at the pial surface, but the contribution is weighted toward the superficial BHA. Although both BHA components volume conduct to the pial surface, the strongest generators of BHA are in the superficial cortical layers. The origins of BHA include a mixture of the neuronal action potential firing and dendritic processes separable from firing. It is likely that, as typically recorded, BHA signals emphasize the latter processes to a greater extent than previously recognized.

We investigated the neural mechanisms generating BHA signal and their relationship to MUA in the neocortex by analyzing FP and concomitant MUA signals recorded with laminar multielectrodes in macaque primary visual (V1: two animals, 104 experimental sessions with whole-screen flashes, 49 sessions with free viewing) and auditory (A1: two animals, 26 experimental sessions with broadband noise, 26 sessions with best frequency tone) cortices. We used first and second derivative (current source density or CSD) analyses of the laminar FP profiles, along with a concomitant MUA to localize the neuronal generators of BHA and to determine their spatiotemporal relationship to neuronal firing. Figure 1 displays representative laminar activity profiles recorded from primary visual (Fig. 1, A, B, and E) and auditory (Fig. 1, C, D, and F) cortices. The notion that BHA directly reflects neuronal firing raises the obvious prediction that BHA and MUA should have the same spatial and temporal distributions across cortical layers. Contrary to this prediction, however, the spatiotemporal profiles of BHA and MUA were reliably different. We observed two temporally and spatially distinct BHA components, including the early-deep BHA localized to the granular and infragranular layers and the late-superficial BHA observed in the supragranular layers (Fig. 1, E and F). Early-deep BHA had clear spatiotemporal overlap with granular and infragranular MUA. However, the spatiotemporal association between late-superficial BHA and MUA was much less clear. Late-superficial BHA often had little or no MUA concomitant, particularly in V1.

Color maps show a CSD superimposed with FPs (left) and a BHA (color map) superimposed with MUA (line plots) profiles (right) in V1 (A) and A1 (C) from a representative session. (A) presents data from V1 recordings during diffuse flash stimulation. (C) shows data from A1 recordings during presentation of broadband noise (100-ms duration). x axes indicate time relative to stimulus onset. y axes represent cortical depth with increasing numbers from superficial to deep layers. Vertical lines indicate sensory events. (B and D) Line plots show the distribution of MUA-BHA cross-correlation coefficients calculated across trials for each penetration of V1 (B) and A1 (D). Box plot presents distribution of the lags obtained from the cross-correlations. Positive values indicate that MUA leads BHA. Shading in the line plot reflects SEM. Central mark and edges in box plots show median and 25th and 75th percentiles. (E and F) show maps of z statistics calculated across trials (n = 137 and 84) for individual V1 (E) and A1 (F) penetration. The statistics values are obtained from a nonparametric pairwise test on MUA (left) and BHA (middle) relative to the prestimulus baseline. Nonsignificant time points are masked (P < 0.05; controlled for multiple comparisons across channels and time with the Benjamini and Yekutieli procedure). Right panels show an overlap (yellow) between the BHA (green) and MUA (red) statistic masks.

Consistent with earlier work (13, 1517), we found that MUA and BHA were correlated at all cortical depths in both V1 and A1 (all Spearmans rho, >0.76; all P < 0.01). We used cross-correlation between BHA and MUA at supragranular, granular, and infragranular layers to test whether the relation between these two signals changes across cortical depth. The cross-correlation coefficient profiles were nonuniform across layers (Fig. 1, B and D). Specifically, the coefficients in the supragranular layers peaked later, relative to those in deeper layers [median lags in V1 supragranular, granular, and infragranular layers were 9, 1, and 2.5 ms; while median lags in A1 supragranular, granular, and infragranular layers were 3.25, 0.5, and 0.25 ms; both Kruskal-Wallis (KW) tests, P < 0.01; Fig. 1, B and D]. This suggests that the relationship between BHA and MUA might vary rather than being constant across cortical depth. To understand this divergence, we quantified the laminar/temporal distributions of both signals, which confirmed the above impressions about the changing association between BHA and MUA across cortical depth.

We tested laminar distributions of BHA and MUA across four different experiments in two cortical areas, V1 and A1. First, we used diffused light flash stimulation (V1-DF), which weakly activates the supragranular layers of V1 relative to patterned stimulation (18); this contrast has been known for decades [see, e.g., (19)]. We selected these nonoptimal stimuli because we expected the dissociation to be strongest under these conditions, where activation of the superficial layers is relatively weak. We observed that BHA and MUA distributions were both nonuniform across V1 cortical depth (both KW tests, P < 0.001, n = 104), yet they differed markedly (Fig. 2, A to D). BHA was strongest in layers where neural firing was sparse to undetected. It was more pronounced in the supragranular than both granular and infragranular layers (all Wilcoxon tests; P < 0.001). MUA displayed the opposite pattern: It was decreased in the supragranular compared to both granular and infragranular layers (both Wilcoxon tests; P < 0.001). BHA magnitude (P = 0.03) unlike MUA (P = 0.14) did differ across the granular and infragranular layers. Seventy percent of all V1 penetrations with diffused light flash stimulation showed a strong supragranular BHA in lieu of any detectable MUA increase. The fact that the BHA and MUA have a differing laminar/temporal distributions accords with the view that these signals reflect different aspects of neural activity.

(A to D) present V1 data from recordings during diffuse flash stimulation (V1-DF; n = 104 experiments in two animals). (E to H) Data from V1 recordings during free-viewing exploration of visual images [V1-FV; n = 49, same two animals as in (A to D)]. Line plots show the time course of BHA (A and E) and MUA (C and G) response across supragranular, granular, and infragranular (red, green, and blue lines) layers. x axes indicate time relative to stimulus (A, C) or fixation onset (E, G). y axes represent signal change from baseline (i.e., normalized BHA/MUA). Box plots present BHA (B and F) and MUA (D and H) distributions averaged across time after stimulus onset (B and D) and across the entire pre- and postfixation epoch (F and H). Supragranular, granular, and infragranular (S, G, and I) layers are plotted as separate box plots. Box plots indicate 25th percentile, median, and 75th percentile; whiskers extend to extreme values not considered outliers, while outliers are marked with crosses. Shading in line plots reflects SEM. Note the consistently different laminar distributions of BHA and MUA in both experiments. Despite different stimuli, levels of firing, and BHA magnitude across experiments, BHA in the supragranular layers is enhanced relative to that in the granular and infragranular layers, while MUA in supragranular is sparse compared to granular and infragranular. Note also that in the free viewing (E to H), there is substantial saccadic modulations of MUA and BHA across all layers, with a clear pattern of MUA suppression around the time of the saccade (perisaccadic suppression) and MUA increase at the end of the saccade (onset of fixation). Arrows in (A and E) indicate early (solid line) and late (dashed line) BHA components.

To test whether the observed dissociation generalizes across types of visual stimuli and task, we examined BHA-MUA dissociation in experimental data collected during free viewing of natural scenes in the same V1 penetrations (V1-FV; see Materials and Methods). It is noteworthy that natural scene viewing produces a much more effective activation of the superficial layers of the primary visual cortex (20). There are multiple differences in BHA and MUA morphology elicited by active (i.e., fixation locked) as compared to passive (stimulus locked) visual input. For example, both BHA and MUA decrease during saccade and rebound after saccade termination (Fig. 2, E to H). Despite these differences in both BHA and MUA morphology, we continue to observe the laminar dissociation between BHA and MUA. Both BHA and MUA show nonuniform distributions across layers (both KW tests, P < 0.001, n = 49), with superficial layers showing strongest BHA (all Wilcoxon tests, z > 5.7, P < 0.001) and weakest MUA (all Wilcoxon test, z > 6.0, P < 0.001).

Next, we sampled from A1 during presentation of broadband noise (A1-BBN; see Materials and Methods) to test whether these effects generalize to other areas of the sensory cortex. Despite differing temporal patterns of BHA signals in V1 and A1, key aspects of laminar dissociation between BHA and MUA generalize to A1. As in V1, event-related BHA and MUA were both observed across all three laminar compartments (Fig. 3, A to D), and both had a nonuniform laminar distribution (both KW tests, P < 0.001, n = 26). Critically, BHA was stronger in the supragranular layers compared to granular and infragranular layers (both Wilcoxon tests, P < 0.001). In contrast, supragranular MUA was weaker than granular and infragranular layers MUA (both Wilcoxon tests, P < 0.001). The poststimulus time interval during which BHA was increased from baseline was more sustained in the supragranular than in the granular and infragranular layers (73.5-, 18.7-, and 20.0-ms median supragranular, granular, infragranular, respectively; both Wilcoxon tests, P < 0.001). In contrast, the poststimulus time interval during which MUA was increased from baseline was shorter in the superficial, as compared to deeper layers (15.5-, 42.5-, and 45.5-ms median supragranular, granular, and infragranular, respectively; both Wilcoxon tests, P < 0.001). Neither BHA nor MUA durations differed between granular and infragranular layers (both Wilcoxon tests, P > 0.84). While the spatiotemporal pattern of BHA and MUA differences in A1 largely parallels with that observed in V1, there are noteworthy A1-V1 differences. BHA in V1 during both passive (stimulus locked) and active (i.e., fixation locked) visual input had two elements (early and late) with confined laminar spread; the early component was limited to deep layers, while the late component was limited to supragranular layers. In A1, we observed larger temporal separation between early and late BHA components (median of 33 ms). As in V1, the late BHA component in A1 is largely limited to the superficial layers. However, unlike the early-deep component in V1, the early BHA component in A1 extends up into the supragranular layers. We quantified this by directly comparing the BHA magnitude in A1 across layers in early (0- to 30-ms poststimulus) and late (31 to 100 ms) time window. Differential laminar distribution was noted for the magnitude of the late (KW test, P < 0.001) but not the early BHA (KW test, P = 0.76). In contrast, MUA was decreased in the supragranular layers compared to granular and infragranular layers during both time windows (all Wilcoxon tests, P < 0.001).

(A to D) presents data from A1 recordings during presentation of broadband noise (A1-BBN; duration, 100 ms; n = 26, two animals). (E to H) shows data from A1 recordings during presentation of best frequency tones [A1-BFT; 100-ms duration; n = 26, same two animals as in (A to D)]. Line plots show the time course of BHA (A and E) and MUA (C and G) response across supragranular, granular, and infragranular (red, green, and blue lines) layers. x axes indicate time relative to stimulus (A, C, E, G). y axes represent signal change from baseline (i.e., normalized BHA/MUA). Box plots present BHA (B and F) and MUA (D and H) distributions averaged across time after stimulus onset. Supragranular, granular, and infragranular (S, G, and I) layers are plotted as separate box plots. Box plots indicate 25th percentile, median, and 75th percentile; whiskers extend to extreme values not considered outliers, while outliers are marked with crosses. Shading in line plots reflects SEM. Note the consistently different laminar distributions of BHA and MUA in both experiments. Despite different stimuli (i.e., broadband noise and best frequency tones), BHA in the supragranular layers is enhanced relative to that in the granular and infragranular layers, while MUA in supragranular is sparse compared to granular and infragranular. Arrows in (A and E) indicate early (solid line) and late (dashed line) BHA components.

To test whether these results further generalize to other auditory stimuli, we analyzed data from the local best frequency tone response for each site within the same penetrations in A1 (A1-BFT; n = 26 sessions, two animals). For each individual penetration, we compared MUA responses across a set of 14 pure tones from 354 to 32 kHz (see Materials and Methods). We defined the best frequency tone as the one that elicited the largest magnitude MUA response in the layer L4 [e.g., (21, 22)]. Subsequently, we aggregated laminar BHA and MUA responses elicited by these best tone frequencies. This analysis reproduced our initial finding of nonuniform laminar distribution of BHA and MUA (KW test, both BHA and MUA, P < 0.01), with BHA being, again, strongest in the superficial layers (all Wilcoxon test, z > 3.3, P < 0.01) and MUA being weakest in the superficial layers (all Wilcoxon test, z > 2.9, P < 0.001; Fig. 3, E to H).

Next, we evaluated the extent to which these two BHA components (deep versus superficial) contribute to the BHA recorded on the pial surface [i.e., electrocorticographic (ECoG)like signal; Fig. 4, A to D]. We reasoned that a signal from the cortical depth that explains most of the variance in the pial surface BHA would indicate a major laminar generator of surface BHA. To quantify the contribution of generators from different depths to the pial surface BHA, we used a standard method of tracing continuous FP from a neural source (generator) to the cortical surface [(22, 23); see Materials and Methods]. On the basis of both the magnitude of supragranular BHA and the proximity of supragranular current generators to the pial surface of cortex, we predicted that the supragranular layers should provide the largest contribution to BHA signal at the cortical surface. To quantify this, we estimated the percentage of variance explained (adjusted R2) by four linear regression models, including the data from either individual layers (Fig. 4) or all layers together (fig. S8). We used a linear regression model because it has been shown that volume conduction itself is linear at a macroscopic scale (2325). For both V1 and A1 experiments, most of the variance was explained by supragranular BHA (see Fig. 4, E to H; KW test, P < 0.05). We also observed that BHA from deep layers could explain some significant portion of variance, particularly in V1 passive viewing. The amount of variance explained by supragranular layers reached 15, 25, 12, and 20% (for V1-DF, V1-FV, A1-BBN, and A1-BFT, respectively), while it peaked at about 5% for granular and infragranular layers in all four experiments. Thus, while the BHA from all laminar compartments contributes to the pial surface BHA, the supragranular layers appear to be the major source.

(A to D) BHA recorded from pial surface, supragranular, granular, and infragranular layers (gray, red, green, and blue, respectively) of (A) V1 during whole-screen flash stimulation (n = 31 experiments). (B) Presentation of broadband noise during A1 recordings (n = 24), (C) free viewing of visual images during V1 recordings (n = 18), and (D) presentation of best frequency pure tones during A1 recordings (n = 24). y axes represent signal change from baseline (i.e., normalized BHA). (E to H) Portions of the amount of variance (adjusted R2) in the pial surface BHA signal explained by each of three different models, containing laminar BHA from either supragranular (red), granular (green), or infragranular (blue) layers as predictors. Colored markers over panels represent cortical depth, which explains most of the variance (KW test across distributions of adjusted R2 values).

To test whether the spatial dissociation between BHA and MUA noted in monkeys could be observed in humans, we used a small dataset from similar laminar probes implanted in a to-be-resected tissue of the prefrontal cortex (PFC) of two patients with pharmacoresistant epilepsy during rest (Fig. 5). In short, spatial distributions of BHA and MUA were notably similar to those observed in monkeys with strongest BHA in the superficial electrodes and MUA in the deeper electrodes. As in our monkey data, we found nonuniform distributions across cortical depth for both BHA and MUA (both KW tests, P < 0.001). There was also a differential distribution of BHA and MUA across cortical depth that was similar to that observed in monkeys: BHA (Fig. 5, A and B) was strongest in the superficial channels as compared to middle and deep channels (both Wilcoxon tests, P < 0.001), whereas MUA (Fig. 5, C and D) was strongest in the middle channels as compared to superficial and deep (both Wilcoxon tests, P < 0.001). This is consistent with our results from nonhuman primates, showing that the main generators of BHA are localized in supragranular layers, whereas the strongest local population neuronal firing is observed in deeper layers. These data were recorded from only two patients during rest (n = 960 and 2532 segments for a duration of 1 s, resulting in a total of 16 and 42.20 min of data) and should be interpreted with caution. However, the data do suggest that BHA and MUA might dissociate in the human neocortex in a manner similar to that we observed in the nonhuman primate neocortex.

Line plots show example traces from simultaneous BHA (A and B) and MUA (C and D) recordings during rest in two patients with epilepsy implanted with linear probes in a to-be-resected tissue. Signals were assigned into three a priori depths (1, 150 to 900 m; 2, 1050 to 1800 m; and 3, 1950 to 2850 m) based on known thickness of the cortex (see Materials and Methods). The whole resting data were segmented into 1-s-long intervals (100-ms-long intervals at side of epoch were removed after filtering to avoid contamination of edge effects). The laminar distribution of BHA and MUA was quantified by testing for nonuniformity of BHA and MUA across depths (see Materials and Methods). Box plots present results aggregated across all BHA (A and B) and MUA (C and D) epochs in each patient separately. Box plots indicate 25th percentile, median, and 75th percentile; whiskers extend to extreme values not considered outliers. Outliers are shown as + signs.

Laminar activity profile recordings in rodents suggest that the most prominent current sink in the supragranular layers, which corresponds to the location generating the late-superficial BHA in our study, reflects the Ca2+-dependent spiking in the apical dendrites of pyramidal neurons (26). The synaptically evoked Ca2+ signal is largely mediated by the N-methyl-d-aspartate (NMDA) receptors (27), which regulate several processes, including neural plasticity (28) and dynamic shifts in neural excitability (29). The effect of NMDA-mediated enhancement of excitability is strongest in the supragranular layers (29), consistent with the preferential expression of NMDA receptors there (30). The laminar distribution of NMDA receptors and the time course of the NMDA-mediated depolarization (slower and primarily supragranular) suggest that the later superficial BHA signal may have a strong NMDA dependence, further dissociating BHA from neuronal firing. To address this possibility, we examined the effects of systemic administration of the noncompetitive NMDA antagonist phencyclidine (PCP) on auditory responses in A1 (n = 8 experiments, one animal). During control recordings (i.e., before PCP), stimulation elicited a sharp and transient increase in both BHA and MUA (Fig. 6). To test the overall effect of PCP on BHA and MUA, we averaged each signal across time within a 150-ms poststimulus window and compared the magnitude of these averaged responses before and after PCP administration (see Fig. 6). After PCP administration, BHA was significantly attenuated across all layers (all Wilcoxon tests, P < 0.01), while MUA showed no detectable difference between control and PCP (all Wilcoxon tests, P > 0.26) at any cortical depth. While there is no significant impact on the MUA, both early and late BHA components are attenuated by the PCP. It is also noteworthy that the early BHA component is attenuated, while the late component is abolished. Albeit based on data from only one subject, the effects of NMDA blockade are robust and provide a pharmacological dissociation between BHA and MUA. Previous studies found enhanced [e.g., (31)] and suppressed (32) BHA after NMDA-antagonist administration. These differential effects might be attributed to the complex influence that NMDA-antagonists have on the stimulus-elicited response (32). Lazarewicz et al. (32) found that an NMDA-antagonist (ketamine) simultaneously enhanced prestimulus and poststimulus gamma activity, while the relative response to stimulus was decreased. The current findings point to a pharmacological dissociation with low doses of an NMDA-antagonist affecting BHA relative response to stimulus while keeping MUA intact.

(A and B) Box plots present BHA (A) and MUA (B) averaged within the 150-ms-long poststimulus time window before (control) and after systemic administration of PCP (n = 8). Box plots indicate 25th percentile, median, and 75th percentile; whiskers extend to extreme values not considered outliers. (C to F) Line plots show the time course of BHA (C and E) recorded from supragranular, granular, and infragranular (red, green, and blue lines) layers of A1 before (C) and after (E) systemic administration of PCP. (D and F) Concomitant MUA recordings from the same supragranular, granular, and infragranular (red, green, and blue lines) layers before (D) and after (F) systemic administration of PCP. x axis indicates time relative to stimulus onset. y axis represents signal change from baseline, averaged over the 50-ms interval before the stimulus (normalized BHA/MUA). Shading reflects SEM.

BHA is a critical mesoscopic signal commonly used to bridge the gap between human electrophysiology and single-unit studies in animals. Moreover, BHA is the closest neural correlate to the BOLD fMRI signal, linking neuroimaging and neurophysiology. On the basis of influential earlier studies, a prevalent view on human electrophysiology is that BHA is a simple reflection of MUA. Across experiments in V1 and A1, we identified spatial, temporal, and pharmacological dissociations between BHA and MUA. Our results suggest that BHA and MUA index different aspects of the neural activity with divergent features across layers of the neocortex. BHA had two spatially and temporally distinct components, i.e., early deep and late superficial, observed in granular-infragranular and supragranular layers, respectively. There is a substantial spatial and temporal correspondence between MUA and the early-deep BHA component. In contrast, the MUA correlate of late-superficial BHA is much weaker and often undetectable. BHA appears to be NMDA mediated, with low doses of noncompetitive NMDA antagonist (PCP) decreasing BHA while leaving MUA intact. Our regression analyses show that, although the BHA from all laminar compartments volume conducts to the pial surface, the main generators of BHA are localized in the supragranular layers where, as shown by numerous prior studies, firing is sparse [(22, 33, 34); for review, see (35)]. This is important because it suggests that the BHA recorded at the pial surface (e.g., with an ECoG electrode) likely overrepresents signals generated in supragranular layers, while the more robust event-related spiking activity is observed in the granular and infragranular layers and often precedes activation, as indexed by BHA. The results of laminar recording experiments in rodents (26) indicate that the large, late-superficial component may be generated by Ca2+ influx during apical dendritic spiking of pyramidal cells. The vulnerability of the largest (late superficial) component of BHA signal to NMDA receptor blockade in our experiments suggests that this component may index the same process.

Several critical implications of our findings for the interpretation of the BHA signal merit further emphasis. First, BHA as recorded from the pial surface of the cortex reflects relatively modest contributions from neuronal firing. Our pharmacological findings (Fig. 6) link to those of Suzuki and Larkum (26) in pointing to an underlying NMDA-mediated process generating BHA. One possibility is that BHA originates from calcium-dependent spikes that are long-lasting (10 to 100 ms) nonsynaptic events triggered by NMDA receptormediated excitatory postsynaptic potentials (36) that have been suggested to be a mechanism for associating information carried by feedforward and feedback pathways (37).

The current finding that the supragranular BHA is the largest contributor to the pial surface signal suggests that the BHA as typically measured in ECoG may contain a substantial representation of input from cortical feedback pathways. The median of 33-ms (interquartile range of 3 ms) onset-to-onset difference between early and late supragranular BHA signals in A1 is much longer than expected for a conduction delay within a direct monosynaptic connection between granular and supragranular layers (35). One possible explanation is that the early BHA reflects feedforward signal propagating to L4 and then to extragranular layers, whereas the late-superficial BHA reflects feedback from higher auditory areas to A1, which provides a strong input to the supragranular layers. In feedback pathways, predictions and contextual information originating in extragranular layers of higher-order areas are projected to and modulate lower cortical areas. Because feedforward and feedback pathways encode different information (33), bias toward feedback circuits in ECoG-derived BHA might favor predictive and contextual information.

The idea that BHA reflects an integrative process separable from the typical action potential may help to interpret several currently unexplained observations. Niessing et al. (14) used recordings from V1 of anesthetized cats to show that BHA is a better correlate of BOLD fMRI than MUA. Both BOLD and BHA encode stimulus intensity at a finer rate than MUA. This is puzzling under the assumption of BHA being a direct consequence of spiking neurons. The current results help to understand this discrepancy by suggesting that BHA (and consequently BOLD fMRI) might reflect dendritic processes subthreshold to neural firing. This interpretation would predict that the correlation between the magnitude of BHA and firing, rather than being constant, depends on the effectiveness of a stimulus in driving the cortex. For stimuli that are more effective in eliciting action potentials, correspondence between BHA and MUA will be stronger than for stimuli that are less effective. In support of this, Nir et al. (15) showed that coupling between firing rates of individual neurons and BHA varies across time rather than being stable. Furthermore, they also showed that the level of spike-BHA coupling depends on the degree of firing rate correlations between neighboring neurons. Similarly, Smith et al. (38) observed changing correlation between BHA and MUA during epileptic seizure. In support of the subthreshold view, Rich and Wallis (17) found that the BHA in the orbitofrontal cortex, although correlated with firing, diverged from MUA on several dimensions, carried more information, and was more sensitive to spatiotemporal changes than neural firing. The current findings suggest that BHA primarily reflects a dendritic process that is separable from neural firing. Our findings also suggest that using BHA as a proxy for neural firing overestimates the onset latency and duration of firing. This outcome introduces important caveats into the interpretation of the BHA signal, but it remains clear that the signal, particularly in the deeper layers, still has a strong relationship to neuronal firing. Improved understanding of the additional neuronal contributions to BHA makes it a richer, more useful index of brain activation. While it is unlikely, it is also possible that BHA and MUA might be generated by two distinct mechanisms operating at the same time at the same cortical depths.

The current findings provide an additional step toward the understanding that in supragranular layers, neural codes could entail dense subthreshold synaptic inputs accompanied by sparse firing (35). It has been clear for some time that the firing in superficial layers is sparse compared to those in the deeper layers. For example, Sakata and Harris (34) studied the population activity in the rat auditory cortex during spontaneous and sensory-evoked stimulation. Both conditions exhibited a sparse, spatially localized activity in the layer 2/3 pyramidal cells, with a densely distributed activity in the larger layer 5 pyramidal cells and putative interneurons. Recordings from pyramidal neurons in primary somatosensory barrel cortex, both under anesthesia and in awake animals, also revealed low spontaneous and evoked firing in layer 2/3 compared to much higher firing rates in layer 5 pyramidal neurons (39, 40). Another study that looked at the barrel cortex in awake head-restrained mice during object localization found superficial layers (layer 2/3) firing was about 20 times weaker than firing rates in deeper layers (41). Similarly, in A1 of nonhuman primates, neuronal firing is typically reduced in the superficial, relative to the middle and deep layers during both spontaneous and stimulus-evoked recordings [e.g., (21, 42)]. A relative paucity of firing in superficial layers is observed in primary somatosensory cortex during stimulation (43) and in resting spontaneous activity (44). Similarly, Bastos et al. (45) observed a weaker superficial firing, as compared to layer 4 in macaque prefrontal cortex (PFC) (see the Supplementary Materials). Self et al. (46) also show weaker supragranular MUA in response to full-screen, high-contrast checkerboard stimulation and during spontaneous recordings in V1. A detailed review of possible mechanisms leading to sparser firing in the superficial layers relative to deeper layers is beyond the scope of our manuscript. However, the fact that layer 2/3 pyramidal neurons appear to require substantially more excitatory synaptic input to drive them to action potential threshold compared to L5 pyramids (35) points to one mechanistic explanation for this common observation.

Acknowledgments: Funding: B.R.A.I.N., MH111439, EYE24776, DC015780, and MH109429. Author contributions: M.L. and C.E.S. designed the study. A.B., Y.K., A.Y.F., and I.U. collected data. M.L. performed analyses. M.L. and C.E.S. wrote the manuscript. All authors contributed to the discussion and interpretation of findings and edited the manuscript. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested to the authors.

Continue reading here:
Dissociation of broadband high-frequency activity and neuronal firing in the neocortex - Science Advances

Whats that smell? Scientists discover what makes locusts swarm. – Grist

News on climate in the time of coronavirusSubscribe today

The photos are truly the stuff of nightmares: Swarms of desert locusts blocking out the sun, blanketing fields, and devouring crops in East Africa, the Middle East, and South Asia. Its the worst outbreak those regions have seen in decades. The locusts were already becoming a crisis, threatening food security and livelihoods in Kenya and Ethiopia by the time the novel coronavirus began crossing borders in late January.

Since then the situation has only gotten worse a wet spring created the right conditions for the bugs to keep multiplying.

Scientists dont know what causes locusts to flock together in the first place. The creature has a mysterious split personality. Locusts can be solitary antisocial, independent, relatively benign. But under certain conditions, which are not fully understood, they can become gregarious traveling together in masses that rival the size of cities, with more than a hundred million bugs packed into each square mile. Right now, the best available method to control the swarms is spraying pesticides, which can be dangerous for ecosystems and human health, depending on what chemicals are used. But if scientists can figure out why locusts become gregarious, that could unlock better options.

A new study published in Nature on Wednesday documents a significant breakthrough on that front. Researchers at the Chinese Academy of Sciences in Beijing identified a specific chemical substance, or pheromone, released by the migratory locust that attracts others to its side. The migratory locust is a different species than the desert locust currently making headlines, but it is a similarly destructive pest and experts told Grist that the discovery will be directly relevant to developing new methods to stave off both species.

Get Grist in your inboxAlways free, always fresh

The Beacon Other choices

Ask your climate scientist if Grist is right for you. See our privacy policy

There is a lot of overlap in the chemistry of the two locust species, said Baldwyn Torto, a scientist at the International Centre of Insect Physiology and Ecology in Kenya, who said the species have similar biology and behavior. (Torto was not involved in the new research.)

The study found that all the locusts examined solitary and gregarious, young and old, male and female, in the lab and in the field were attracted to a pheromone known as 4-vinylanisole, or 4VA. The chemical is released mainly by gregarious locusts, and the more locusts they stuck together in a cage, the more each bug let loose. Even though solitary locusts did not emit 4VA on their own, when the researchers put just four or five solitary locusts together, they began to produce the pheromone, too.

The results indicate that scientists could measure 4VA emissions to monitor populations and predict swarms, or use 4VA lures to attract the bugs to a concentrated area where they could be killed with pesticides. Monitoring the build up of locust populations is absolutely key to their effective control, said Stephen Rogers, a research associate at the University of Cambridge who was not involved in the study. Incipient swarms can be nipped in the bud before numbers become overwhelming.

The team behind the new study made a second discovery that experts said could be even more helpful: It identified the specific receptor in the locusts antenna that detects 4VA. That knowledge could be used to develop a treatment that inhibits the receptor, essentially blinding the locust to its own pheromone.

I hate seeing those pictures of the planes going and people spraying the pesticides because those kill everything, said Leslie Vosshall, a molecular neurobiologist at The Rockefeller University, who reviewed the study before it was published. If instead, you could have these planes that are spraying molecule X, it would be really selective, it wouldnt kill anything. It just turns this receptor off or prevents the receptor from finding the pheromone. At least on paper, that would have a huge effect.

The study described one other possibility for mitigating swarms. Using gene editing, mutant locusts that lack the special receptor for 4VA could be bred and released into the wild. But neither Vosshall or Rogers felt that path would be worth pursuing anytime soon.

One of the major issues with locusts is that they affect livelihoods in regions of the world where life is already precarious and difficult, Rogers said. And high-tech solutions tend to be expensive.

The new study is not going to help with the current outbreak in Africa and the Middle East, as no one has studied whether the desert locust is attracted to 4VA, but experts agreed it presents a blueprint for scientists to find out what does seduce that cursed species.

The way that humanity tackles this pandemic parallels how it might fight climate change. Sign up for our semi-weekly newsletter,Climate in the Time of Coronavirus.

See the rest here:
Whats that smell? Scientists discover what makes locusts swarm. - Grist

How to get into a positive mindset to move with the COVID times – Houston Chronicle

This is a challenging moment. The way we see each other, the way we work even the way we grocery shop has been shaken up.

The pandemic hasnt only threatened obvious aspects of our lives, its had an uncanny way of bringing other problems to light, too.

Frustration, resentment and helplessness are common threads. If you feel that gloomy things often happen to you, youre not alone. Success coach Albina Rippy has a few tips that may help.

Rippy and her husband, Roger, started YogaOne, a small one-room yoga studio in Midtown, in 2008 and grew to seven locations before selling to YogaWorks in 2017. Now, Rippy leads yoga training virtually and at beautiful international destinations; runs a coaching business; and operates their retreat center in Taos, N.M. Shes a mom, too.

But none of this came without obstacles and doubt. Rippy grew up in the Soviet Union, amid its collapse. As a child, I waited in bread lines, she said in an interview with Voyage Houston. I witnessed how my familys savings became worthless because the government changed its currency, literally, overnight. I witnessed fear, desperation and hopelessness firsthand.

At 16 years old, Rippy left Kazakhstan, alone, barely speaking English, to go to school in the U.S.

She knows a thing or two about handling a challenge.

She says when seemingly unfixable circumstances yield chronic blues, its important to take a deeper look. The root of the problem isnt typically what it seems.

We blame the economy, the pandemic, our soul-crushing jobs, a mean boss, all men, all women, our upbringing, and so on, for our lack of happiness and wealth, she says.

To Rippy, this kind of finger-pointing uses a lot of energy and ultimately leaves us tired, bitter and blind to opportunities for better outcomes. A wiser approach is to turn a gentle gaze within.

Say, for example, you hate your boss and blame this person for why you didnt get a promotion. Its an understandable situation, but according to Rippy, dwelling on the other person represents a victims mindset. When we see the world from this perspective, we cement a limited view that lacks self-awareness and is incompatible with growth and possibilities.

You cannot even consider that your boss might sense your resentment and dislike, or that your mindset is causing you to have a negative attitude at work, or that on a subconscious level you are sabotaging (your own cause), Rippy says.

She adds: The moment you see this clearly, you get access to choice. You can choose to forgive your boss and yourself and let go of your grudge and resentment. You can genuinely choose positivity and love. Your choice alone will elevate your inner vibration and influence the way you see the world.

Perhaps, you will start seeing that your boss is actually trying to connect with you. Or that your bosss own challenges (a sick child or parent, difficulties in their marriage, their financial struggles, etc.) influence their inner state and that it has never been about you.

Rippy says when we take responsibility for our experiences, we uncover a magnitude of possibilities, opportunities and choices right under our noses.

Maybe softening your view of your boss paves the way for a surprising bond that leads to an even better opportunity. Maybe when youre less consumed by this persons shortcomings, your creativity surges and you take on new and deeply fulfilling projects, or start a kick butt side hustle. Maybe you just realize a vacation would serve you well. The possibilities are vast.

But heres an important qualifier: Shame is not a part of the game.

Rippy urges us not to start presuming everything imperfect is our fault. On the other hand, she says this about shifting into a next-level mindset where instead of challenges being cause for blame on anyone, theyre invitations to dig deep and find new potential.

Through challenges and trials, you grow and expand, you become strong, unstoppable, unshakable, unbreakable. This perspective gives you access to choice, power, innovation, resilience, love.

Here are a few of other strategies she suggests for moving through ups and downs:

When we dwell in the victim mindset, we are filled with resentment, grudges and blame. This is a heavy burden to carry. Furthermore, these difficult emotions take up too much of our energetic bandwidth, blocking the flow of goodness in our lives. If you want to create the life you yearn for you must let go of your resentments and free yourself. I teach an ancient Hawaiian prayer called HoOponopono (where you repeat the phrases): I love you. I am sorry. Please forgive me. Thank you.

Her favorite: Every day and in every way, I am strong, healthy, young, beautiful, charismatic, creative, resilient, kind, loving, generous, compassionate, infinitely loved, abundantly blessed and divinely guided.

I say this over and over again, as I run or work out, using all of my physiology and lots of passion, she says.

We all are very clear on what we dont want. I dont want to get sick or I dont want to lose my job or I dont want to end up alone. We have a much more challenging time identifying what we truly want. When we consciously direct our minds to focus on what we do want, our brains start filtering bringing to our attention situations, people, opportunities that will get us to where we want to go.

To Rippy, looking within and doing this work is a pathway out of the pits and to much brighter pastures.

Marci Izard Sharif is an author, yoga teacher, meditation facilitator and mother. In Feeling Matters, she writes about self-love, sharing self-care tools, stories and resources that center around knowing and being kind to yourself.

Read more:
How to get into a positive mindset to move with the COVID times - Houston Chronicle

UO team will use zebrafish in new study of aquatic symbioses – AroundtheO

A UO-led team of researchers spanning physics, neuroscience, molecular biology, ecology and evolution will use a new $325,000 grant to examine aquatic symbioses the interactions between different animal species living together.

The project is funded by a 30-month award from the Gordon and Betty Moore Foundation and involves the study of zebrafish in controlled ecosystems.

The team will leverage decades worth of pioneering research at the UO involving zebrafish and explorations of the gut microbiome, in which vast numbers of microbes contribute to both health and disease in their hosts. UO has been a leader in zebrafish research since the 1960s, when the late biologist George Streisinger established zebrafish as an ideal model for studying human development and disease.

We aim to develop new tools for studying these symbioses throughout the entire lifespan of zebrafish, which serves as a model aquatic animal and a model for phenomena relevant to all vertebrates, including humans, said Raghuveer Parthasarathy, an Alec and Kay Keith Professor in the Department of Physics, a member of the UOs Institute of Molecular Biology and Materials Science Institute, and the principal investigator on the award.

The project builds on the successes of the zebrafish group here at the UO and it pushes it to the next frontier of trying to capture the whole lifespan of the animal and its ecosystem, Parthasarathy said.

Along with Parthasarathy, the team includes Karen Guillemin, Judith Eisen and Brendan Bohannan, all professors in the Department of Biology. Guillemin is a Philip H. Knight Chair and a member of the Institute of Molecular Biology. Eisen is a member of the Institute of Neuroscience. Bohannan, the James F. and Shirley K. Rippey Chair in Liberal Arts and Sciences, is a member of the Institute of Ecology and Evolution.

The team also includes John Rawls, a professor of molecular genetics and microbiology at Duke University and the director of the Duke Microbiome Center.

Part of the Moore Foundations Symbiosis in Aquatic Systems Initiative, the project will contribute to a larger effort to equip the scientific community with new genetic tools, cultivation methods and other infrastructure to improve experimental capabilities in aquatic symbiosis research over the coming decade. Increasingly, researchers are recognizing that symbiotic bacteria are critical components in the processes that sculpt the evolution, ecology, development and physiology of animals, yet remarkably little is known about exactly how those processes play out.

The four UO researchers have worked together on previous projects as part of the UOs interdisciplinary Microbial Ecology and Theory of Animals, a National Institutes of Health-funded Center of Excellence in Systems Biology. The center is funded by a $7.6 million grant and seeks to better understand the bacteria and other microorganisms that reside in the animal gut and influence many biological functions.

Building on their earlier work studying individual biological processes, the new research will explore the entire ecosystem and lifespan of zebrafish and consider food chains, population densities and other attributes. The project will serve as a bridge between more traditional model system research and field studies, opening up new frontiers in zebrafish research, Parthasarathy said.

The project involves three main areas. Investigators will:

Were hoping to learn how can we both predict and control ecosystem constituents, things like food and bacteria and how can that give us healthy organisms throughout their lifespan, Parthasarathy said. Our approach focuses especially on better understanding nutrition and on engineering new aquatic habitats that allow controlled investigation of symbiotic interactions. We want to watch and learn from the entire process.

The UO team will be building on a strong foundation of zebrafish research. That includes groundbreaking work by Eisen examining interactions between the nervous system, immune system and bacteria in the gut, and Guillemins innovative development of specialized sterile zebrafish that allow scientists to better determine the role microbes play as animals grow.

Bohannan has conducted important research on zebrafish, tracking them throughout their life cycle to see how diet, genetics and immune response affect their microbial diversity. And Parthasarathy has employed physics to better understand how gut microbes move and interact with each other, producing stunning, high-resolution, three-dimensional images and videos of gut bacteria in zebrafish using a technique known as light sheet microscopy.

Rawls, the biologist from Duke University, studies gut bacteria in zebrafish and their role in regulating digestive physiology, innate immunity and gut-brain communication.

I think (this research) may open up a lot of ecological questions, Parthasarathy said. If we succeed, we can expand our methods to other species such as plants and algae and explore their interactions. I think there is lots of potential for growth.

The project is the latest in a string of awards to UO researchers from the Moore Foundation. Earlier this year Eisen received a $2 million grant through the same symbiosis initiative to probe the relationship between symbiotic bacteria and neural development, using zebrafish as a model organism. In January, UO biologist Kelly Sutherland received a $1.1 million grant from the foundation funding her research examining the swimming mechanisms of gelatinous marine organisms.

These awards are a testament to the exceptional research being conducted at the University of Oregon, said Provost and Senior Vice President Patrick Phillips. We are grateful to the Gordon and Betty Moore Foundation for their generous support of our researchers and their investment in these innovative and impactful projects, which support the foundations critical mission of fostering pathbreaking scientific discovery and further the UOs commitment to enriching the human condition through creative inquiry and scientific discovery.

By Lewis Taylor, University Communications

Read more:
UO team will use zebrafish in new study of aquatic symbioses - AroundtheO

Antibody drugs could be key tools against Covid-19. But will they matter? – STAT

From the moment Covid-19 emerged as a threat, one approach to making drugs to treat or prevent the disease seemed to hold the most promise: Theyre known as monoclonal antibodies.

Now, scientists are on the brink of getting important data that may indicate whether these desperately needed therapies could be safe and effective. Clinical trials involving a pair of antibodies developed by Regeneron Pharmaceuticals will read out early results in September. A separate effort from Eli Lilly could yield data later in the fall.

Despite experts eagerness to see the data, however, there remains a debate over just how significant a role any antibody treatment might play in changing the course of the pandemic.

advertisement

A lot of smart people who understand immunology and virology think antibodies will work, said Robert Nelsen, an investor at ARCH Venture Partners who is invested in Vir Biotechnology, which will start tests of its own Covid-19 antibody study this month.

Scott Gottlieb, the former commissioner of the Food and Drug Administration, is less sure antibody treatments will be significant factors in bringing the pandemic under control. Even though the development efforts have been proceeding extraordinarily fast by normal standards, the U.S. has spent billions of dollars purchasing vaccines in advance, but has done far less to shore up capacity for antibody drugs.

advertisement

We may have missed a window to scale the manufacturing of antibody drugs that could have been an important bridge to a vaccine and a hedge in the event vaccines are delayed or dont work, Gottlieb, a fellow at the American Enterprise Institute and board member for Pfizer and other health care companies, told STAT. These drugs had the ability to perhaps meaningfully change the contours of this epidemic, and we just wont have enough doses to realize that goal.

Monoclonal antibodies are antibodies the kind that the body produces to neutralize invading viruses that have been genetically engineered into new medicines.

In 1975, two researchers, Georges J.F. Khler and Csar Milstein, developed the method for mass-producing them by fusing antibody-producing cells from mice with cancer cells. They shared the Nobel Prize in physiology or medicine in 1984. The first monoclonal antibody drug, for kidney transplant patients, was approved in 1986. Today, Humira, an antibody from AbbVie that treats a host of immune-related diseases, is the pharmaceutical industrys top-selling product, generating $15 billion in sales last year.

Regeneron has produced several monoclonal antibodies since being founded in 1988, including Praluent for high cholesterol, Libtayo for a type of cancer, and Dupixent for severe eczema. In 2014, the technology was also used to develop an effective treatment for Ebola.

As the Covid pandemic hit, Regenerons chief scientific officer, George Yancopoulos, assigned Christos Kyratsous, a confident, Porsche-driving scientist with a dry sense of humor, to lead a team that would search for an antibody. In early February, a non-infectious fragment of genetic code of the novel coronavirus arrived at the companys research laboratories in Tarrytown, N.Y., from China, and the company has used this starting material to produce hundreds of virus-neutralizing antibodies using genetically engineered mice, along with blood taken from survivors of Covid-19.

But getting antibodies into people has taken time. I tragically right now have a 91-year-old aunt whos trapped in a nursing home where right now theres a coronavirus outbreak, Yancopoulos said in April. And I just wish I could get them our [drug] today. Its just not ready.

Other companies are advancing their own efforts. For years, AbCellera, a Vancouver-based biotech, had been working with the National Institutes of Health and the U.S. Department of Defense to game out the response to future pandemics. In February, the NIHs National Institute of Allergy and Infectious Diseases sent the company a sample of blood from a patient who had recovered from Covid-19. AbCellera inserted the sample into a credit-card-sized device that isolates the B cells that make antibodies, and used it to find more than 550 antibodies that might work against the virus.

Adaptive Biotechnologies, AbbVie, and AstraZeneca have also rushed forward with their own antibody efforts.

Regenerons antibodies REGN10933 and REGN10987 both target the spike protein on the virus surface that helps it invade cells, but individually, each drug binds to the protein at a different, non-overlapping location. This cocktail approach aims to increase the chance that the virus can be neutralized without escaping. Its the same multidrug strategy used successfully to treat other viral diseases such as HIV and hepatitis C. Regeneron refers to the dual antibody regimen as REGN-COV2.

The first look at Regenerons data will provide results on the ability of REGN-COV2 to reduce the amount of SARS-CoV-2 virus in patients compared to placebo. Safety and other data will also be announced.

Outcomes data will come later. For the study of hospitalized Covid-19 patients, Regeneron hopes to show that the treatment can improve clinical status based on a seven-point scale ranging from hospital discharge to death. In between, the scoring system measures changes in the use of supplemental oxygen or mechanical ventilation. In the study of ambulatory Covid-19 patients, REGN-COV2 is designed to speed recovery and prevent the disease from getting worse. Unlike Regeneron, Eli Lilly and AbCellera have chosen not to use a cocktail approach, starting instead by testing a single antibody. Data from its study, however, being conducted with the NIH, arent expected to be released until October or November.

Reducing the theoretical risk of escape mutations has a real cost, and the real cost is manufacturing, meaning you will have less doses available, meaning fewer people will be treated in this critical time period, Lilly Chief Scientific Officer Daniel Skovronsky told STAT during a recent event. So my view is we go for a single antibody, which means that we can treat twice as many people if it works.

The Lilly antibody, called LY-CoV555, will be investigated in a placebo-controlled clinical trial of approximately 300 patients hospitalized with mild to moderate Covid-19. An initial efficacy assessment based on symptoms improvement, including the need for supplemental oxygen, will be conducted five days following the injections of LY-CoV555 or placebo. If these initial results show a benefit for the Lilly antibody, the study will be expanded to enroll another 700 patients, including people with severe cases of Covid-19.

Recently published animal data suggest these antibody treatments may work in humans. Monkeys exposed to SARS-CoV-2 followed one day later with injections of the Regeneron cocktail cleared the virus faster than monkeys treated with a placebo. Damage to the lungs, including cases of pneumonia, was reduced but not eliminated in the monkeys treated with the cocktail compared to the placebo group. The monkey study was released via a preprint server, meaning the data had not yet been peer-reviewed or published in a journal.

In a research note, SVB Leerink analyst Geoff Porges called the monkey data quite encouraging, but he also cautioned it may not be curative in humans on its own, citing the inconclusive pneumonia results and the challenge of treating patients early, before they might have symptoms.

If clinical development for the antibody cocktails is successful, we believe it would be most likely to complement the existing standard of care and antiviral therapies such as remdesivir, rather than displacing antivirals, said Porges.

Nelsen, the investor at ARCH Venture Partners, said: If you treat people who are very sick, you may not see anything. If you treat people earlier, you will probably see what you saw in the monkeys: a significant reduction in virus, which doesnt necessarily mean a reduction in morbidity and mortality, but it should. What you really want to do is prevent the progression of the disease.

Vir, the biotech firm that Nelsen backed, will start a clinical trial of its lead antibody candidate VIR-7831 later this month, seeking to show that it can prevent hospitalization due to Covid-19. A second antibody candidate, VIR-7832, will advance into a clinical trial later this year. Both drugs are designed to bind to a location on the spike protein that creates a high barrier to resistance. In preclinical studies, the antibodies also recruit immune cells to help kill other cells already infected by the virus, Vir said.

Similar to vaccines, antibody treatments are also being developed to prevent Covid-19 infection, particularly in people who are at high risk and who might have been exposed to the virus through close contact with an already infected person.

Once someone has come into contact with some of the disease, its too late for an active vaccine, Lillys Skovronsky said. But a passive immunization like our antibody could be valuable. When you think about the populations that are suffering the most, its the elderly, its the immunocompromised, its patients in nursing homes and long-term care facilities.

Lilly and NIAID are conducting a 2,400-patient Phase 3 study to test whether its treatment can keep nursing home patients from developing Covid-19. The antibody will be given to patients and staff at places where there has been an infection to see if it can stop them from developing the disease. To conduct the study, Lilly is deploying a fleet of recreational vehicles that can be used prepare study drug and do lab work, as well as pull trailers that can be used as on-site infusion clinics.

Regeneron and NIAID are also conducting a prevention study in 2,000 healthy adults who are household contacts with an individual with a positive Covid-19 test. Will it be possible to manufacture enough antibody? Regeneron said it is in active discussions with other parties that can add additional manufacturing capacity.

The big determinant of how fast answers will emerge will be the speed at which doctors can enroll patients in these studies, said Anita Kohli, the director of clinical research at Arizona Clinical Trials and an investigator for both Regeneron and Eli Lilly. This, she said, is harder than it sounds, especially for patients who are not so sick that they are in the hospital. I think some of the recruitment is more difficult, because youre recruiting sick people, she said. Sick people want to eat chicken soup and stay at home and not go to the clinical trials center.

One problem is that diagnostic tests are taking a long time to come back. Doctors are supposed to enroll patients in the studies within five or six days of the onset of symptoms. If testing takes two weeks to come back, patients often recover before they are enrolled. Kohlis center has begun to test patients for Covid in the hopes that some will volunteer to be in studies.

Vaccines are not going to work for everybody, she said. People are still going to get sick, theres no two ways about it. And weve got to have a treatment.

The problem, she said, is that patients are not being made aware of clinical trials for therapeutics soon enough.

People have not been directed toward clinical trials, or are not thinking about them, she said. I think thats what we need to change here. Its not that they arent very exciting, they are very exciting. They just arent talked about enough.

Original post:
Antibody drugs could be key tools against Covid-19. But will they matter? - STAT

The Secret to a Long, Healthy Life Is in the Genes of the Oldest Humans Alive – Singularity Hub

The first time I heard nematode worms can teach us something about human longevity, I balked at the idea. How the hell can a worm with an average lifespan of only 15 days have much in common with a human who lives decades?

The answer is in their genesespecially those that encode for basic life functions, such as metabolism. Thanks to the lowly C. elegans worm, weve uncovered genes and molecular pathways, such as insulin-like growth factor 1 (IGF-1) signaling that extends healthy longevity in yeast, flies, and mice (and maybe us). Too nerdy? Those pathways also inspired massive scientific and popular interest in metformin, hormones, intermittent fasting, and even the ketogenic diet. To restate: worms have inspired the search for our own fountain of youth.

Still, thats just one success story. How relevant, exactly, are those genes for humans? Were rather a freak of nature. Our aging process extends for years, during which we experience a slew of age-related disorders. Diabetes. Heart disease. Dementia. Surprisingly, many of these dont ever occur in worms and other animals. Something is obviously amiss.

In this months Nature Metabolism, a global team of scientists argued that its high time we turn from worm to human. The key to human longevity, they say, lies in the genes of centenarians. These individuals not only live over 100 years, they also rarely suffer from common age-related diseases. That is, theyre healthy up to their last minute. If evolution was a scientist, then centenarians, and the rest of us, are two experimental groups in action.

Nature has already given us a genetic blueprint for healthy longevity. We just need to decode it.

Long-lived individuals, through their very existence, have established the physiological feasibility of living beyond the ninth decade in relatively good health and ending life without a period of protracted illness, the authors wrote. From this rare but valuable population, we can gain insight into the physiology of healthy aging and the development of new therapies to extend the human healthspan.

While it may seem obvious now, whether genes played a role in longevity was disputed for over a century. After all, rather than genes, wouldnt access to health care, socioeconomic status, diet, smoking, drinking, exercise, or many other environmental and lifestyle factors play a much larger role? Similar to height or intelligence (however the latter is assessed), the genetics of longevity is an enormously complicated and sensitive issue for unbiased studying.

Yet after only a few genetic studies of longevity, a trend quickly emerged.

The natural lifespan in humans, even under optimal conditions in modern societies, varies considerably, the authors said. One study, for example, found that centenarians lived much longer than people born around the same time in the same environment. The offspring of centenarians also have lower chances of age-related diseases and exhibit a more youthful profile of metabolism and age-related inflammation than others of the same age and gender.

Together, about 25 to 35 percent of the variability in how long people live is determined by their genesregardless of environment. In other words, rather than looking at nematode worm genes, we have a discrete population of humans whove already won the genetic lottery when it comes to aging. We just need to parse what winning means in terms of biology. Genes in hand, we could perhaps tap those biological phonelines and cut the wires leading to aging.

Identification of the genetic factors that underlie extreme human lifespan should provide insights into the mechanisms of human longevity and disease resistance, the authors said.

Once scientists discovered that genes play a large role in aging, the next question was which ones are they?

They turned to genome-wide association studies, or GWAS. This big data approach scans existing genomic databases for variations in DNA coding that could lead to differences in some outcomefor example, long versus short life. The differences dont even have to be in so-called coding genes (that is, genes that make proteins). They can be anywhere in the genome.

Its a powerful approach, but not that specific. Think of GWAS as rudimentary debugging software for biological code: it only looks for differences between different DNA letter variants, but doesnt care which specific DNA letter swap most likely impacts the final biological program (aging, in this case).

Thats a huge problem. For one, GWAS often finds dozens of single DNA letter changes, none powerful enough to change the trajectory of aging by itself. The technique highlights a village of DNA variants, that together may have an effect on aging by controlling the cells course over a lifetime, without indicating which are most important. Its also hard to say that a DNA letter change causally leads to (or protects against) aging. Finally, GWAS studies are generally performed on populations of European ancestry, which leaves out a huge chunk of humansfor example, the Japanese, who tend to produce an outsized percentage of centenarians.

So what needs to change?

Rather than focusing on the general population, the key is to home in on centenarians of different cultures, socioeconomic status, and upbringing. If GWAS are like fishing for a rare species in several large oceans, then the authors point is to focus on pondsdistributed across the worldwhich are small, but packed with those rare species.

Extremely long-lived individuals, such as centenarians, compose only a tiny proportion (~0.01 percent to 0.02 percent) of the United States population, but their genes contain a biological blueprint for healthy aging and longevity, the authors said. Theyre spared from usual age-related diseases, and this extreme and extremely rare phenotype is ideal for the study of genetic variants that regulate healthspan and lifespan.

Its an idea that would usually make geneticists flinch. Its generally thought that the larger the study population, the better the result. Here, the recommendation is to narrow our focus.

And thats the point, the authors argue.

Whatever comes out of these studies will likely have a much larger impact on aging than a GWAS fishing experiment. Smaller (genomic) pond; larger (pro-youth) fish. Whats more, a pro-youth gene identified in one European-based long-living population can be verified in another group of centenarianssay, Japaneseensuring that the gene candidates reflect something fundamental about human aging, regardless of race, culture, upbringing, and wealth.

A genomic screen of centenarians can easily be done these days on the cheap. But thats only the first step.

The next step is to validate promising anti-aging genetic differences, similar to how scientists validated such differences in nematode worms during classic longevity studies. For example, a promising pro-youth gene variant can be genetically edited into mice using CRISPR or some other tool. Scientists can then examine how the mice grow up and grow old, compared to their non-edited peers. Does the gene make these mice more resilient to dementia? What about muscle wasting? Or heart troubles? Or hair greying and obesity?

From these observations, scientists can then use an enormous selection of molecular tools to further dissect the molecular pathways underlying these pro-youth genetic changes.

The final step? Guided by centenarian genes and validated by animal models of aging, we can design powerful drugs that sever the connection between the genes and proteins that drive aging and its associated diseases. Metformin is an experimental pill that came out of aging studies in nematode wormsimagine what studies in human centenarians will yield.

Despite enormous improvements in human health over the past century, we remain far from a situation in which living to 100 years of age in fairly good health is the norm, the authors said.

But as centenarians obviously prove, this is possible. By digging into their genes, scientists may find a path towards healthy longevitynot just for the genetically fortunate, but for all of us.

Image credit:Cristian Newman / Unsplash

Read more:
The Secret to a Long, Healthy Life Is in the Genes of the Oldest Humans Alive - Singularity Hub

Impact of delayed ventricular wall area ratio on pathophysiology of mechanical dyssynchrony: implication from single-ventricle physiology and 0D…

This article was originally published here

J Physiol Sci. 2020 Aug 6;70(1):38. doi: 10.1186/s12576-020-00765-y.

ABSTRACT

Electrical disparity can induce inefficient cardiac performance, representing an uncoordinated wall motion at an earlier activated ventricular wall: an early shortening followed by a systolic rebound stretch. Although regional contractility and distensibility modulate this pathological motion, the effect of a morphological factor has not been emphasized. Our strain analysis in 62 patients with single ventricle revealed that those with an activation delay in 60-70% of ventricular wall area suffered from cardiac dysfunction and mechanical discoordination along with prolonged QRS duration. A computational simulation with a two-compartment ventricular model also suggested that the ventricle with an activation delay in 70% of the total volume was most vulnerable to a large activation delay, accompanied by an uncoordinated motion at an earlier activated wall. Taken together, the ratio of the delayed ventricular wall has a significant impact on the pathophysiology due to an activation delay, potentially highlighting an indicator of cardiac dysfunction.

PMID:32762655 | DOI:10.1186/s12576-020-00765-y

View post:
Impact of delayed ventricular wall area ratio on pathophysiology of mechanical dyssynchrony: implication from single-ventricle physiology and 0D...