Nir Hacohen, an immunologist and geneticist at the Broad Institute of the Massachusetts Institute of Technology and Harvard University, knew that biology had a problem. He wanted to understand the human immune responses role in cancer and other diseases. But to do that, he first had to address a more fundamental issue: The definition of the immune cell types themselves seemed insufficient, incomplete and outdated.
For over a century, distinctions between types of cells relied on how they appeared under a microscope: their shapes, sizes, locations and their uptake of staining dyes. Recent decades, however, witnessed a shift to molecular methods that use fluorescently labeled antibodies to target protein markers on the cells surface. Although this approach allowed researchers to isolate more cell types, it was not enough, according to Hacohen. Until 2009, biologists could analyze cells only in bulk, averaging signals from multitudes of them to get a picture of what was going on in a tissue. When sequencing RNA from individual cells finally became possible, the initial analyses were what Hacohen called biased and shallow because the few markers used to classify the cells were too insensitive to nuances of differences among them. Does this really capture the complexity of the cell? Hacohen said.
In a study published in Science this past April, he and his team showed that, as expected, much of this complexity had been obscured. Analyzing patterns of gene expression in individual human immune system cells, the researchers refined the definitions of the types known as dendritic cells and monocytes and identified a novel type that had been overlooked. Moreover, they discovered that a cell population thought to comprise one subtype was actually a mixture of two, which perform different functions.
Hacohens work represents one component of a much larger project. Last October, an international community of researchers led by Aviv Regev of the Broad Institute and Sarah Teichmann of the Wellcome Trust Sanger Institute launched the Human Cell Atlas to apply this kind of modeling to the entire body. It aims to catalog not just cell types which are predicted to extend far beyond the 200 types most often cited in textbooks but also the hallmarks of cell types under different conditions and in individuals with different genetic and epigenetic variations. That knowledge is important because it would provide a more comprehensive overview of the dynamic complexity of life. Immune cell subtypes might shift in someone who has an infection or an allergy or an autoimmune disease, for example; or they may vary for different population groups.
This is not comparable to the Human Genome Project, Hacohen said. That was a fairly well-prescribed problem. Here the problem is much more difficult and in a sense encompasses a lot of biology.
The Human Cell Atlas is only one of several projects in molecular and cellular biology looking to synthesize enormous quantities of data to gain deeper insights into just how diverse the cells in our bodies really are, and how complex life is. In 2003, researchers at the KTH Royal Institute of Technology, in Sweden, launched the Human Protein Atlas, which aims to catalog comprehensively the expression, location and spatial distribution of proteins within individual cells. Only within the past few years were members of the project able to start classifying, annotating and analyzing the millions of images they had captured of subcellular structures in different cell types. To reach that point, they first had to spend a decade standardizing, optimizing and scaling up their procedures, which involved using targeted antibodies to stain proteins and then looking for those markers inside healthy and cancerous tissue cells with high-resolution microscopy.
In January 2015, the team charted protein expression across more than 30 human tissues. This past May, they published the second part of their undertaking in Science. Turning their attention to the single-cell level, they mapped more than 12,000 proteins to 30 subcellular structures, in turn defining the proteomes the complete sets of expressed proteins of more than a dozen major organelles. The researchers identified which proteins were found where, explored variations in protein expression from cell to cell and analyzed how cells segregate chemical reactions within themselves.
One of the papers most salient findings, according to its principal investigator, Emma Lundberg, was that as many as half of our proteins can be found in multiple compartments of a cell. Everything that proteins do is specific within the context of their environment, Lundberg said. If one protein is present in the nucleus but also in the plasma membrane, it might have different functions in those compartments.
Take HER2, a receptor protein often overexpressed in certain breast cancers. When found in tumor cell membranes, HER2 correlates with a better prognosis than when it is in the cytoplasm or nucleus. There are more and more and more studies of single proteins showing that this is actually a common phenomenon, Lundberg said. But its the scale of it, she added, that is most exciting.
As much as 50 percent of the proteins that her group observed were expressed in more than one part of a cell. If that figure indicates how big multi-functionality could be, Lundberg said, it makes the cell much more complex and the functionality of the proteome greater.
This heterogeneity offers deeper insights into the fundamentals of protein function, but it may also explain why, for instance, certain drugs result in unwanted side effects.
Another group of scientists, who hope to publish their work in the fall, have been mapping the distribution of proteins in the cell types of the testis home to the greatest number of uniquely expressed protein-coding genes. In doing so, they are reclassifying the cell subtypes that occur during spermatogenesis. Many things are happening in these cells before they become mature, said Cecilia Lindskog Bergstrm of Uppsala University in Sweden, who is collaborating on the research. Proteins that are expressed in a certain sub-stage of sperm development will tell more about the function of these proteins.
This dynamic way of defining cell type is what Hacohen sought to establish further in his study of blood cells. In the findings it reported in May, the Human Protein Atlas began to demonstrate why these refinements may be necessary. The team observed that approximately 15 percent of the proteins exhibited single-cell variation: In a tissue that looked superficially uniform, some cells might differ from their neighbors in the amount or spatial distribution of the proteins they expressed, when one would expect them to be the same. The single-cell RNA sequencing approach of the Human Cell Atlas will allow researchers to create cell profiles based on molecules other than proteins.
In the past, we typically looked at a tissue or an organ in the way youd look at a smoothie, said Bart Deplancke, a biological systems engineer at the cole Polytechnique Fdrale de Lausanne in Switzerland. Based on its overall color and taste, one might assume that a smoothie consists of strawberries and bananas. But that way of looking at it may miss key ingredients and makes it seem as if all parts of the smoothie are identical. With modern techniques, Deplancke said, they can do the tissue-analysis equivalent of looking at a smoothie and saying, I see these different pieces of fruit. And they can see how that full diversity of cell types makes a functional organ. Similarly, they can learn how the full spectrum of cells involved in cancers and other diseases relates to prognosis and recovery.
Deplancke is one of three researchers who have begun organizing the Fly Cell Atlas, which seeks to characterize all the cell types in Drosophila fruit flies. The Allen Institute in Seattle is working toward a similar understanding of the mouse brain. Both hope to apply their findings to explain human behavior and disease, just as the Human Cell Atlas does. Ultimately, integrating the vast datasets generated by these different atlases may prove the greatest challenge of all but, the researchers hope, it will also be the most rewarding, combining structural, genomic and epigenetic approaches under the umbrella of a new kind of cartographic exploration.
Read the rest here:
Cell Atlases Reveal Biology's Frontiers - Quanta Magazine
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]