Cell Definition
Cells are the basic unit of life. In the modern world, they are the smallest known world that performs all of lifes functions. All living organisms are either single cells, or are multicellular organisms composed of many cells working together.
Cells are the smallest known unit that can accomplish all of these functions. Defining characteristics that allow a cell to perform these functions include:
Below we will discuss the functions that cells must fulfill in order to facilitate life, and how they fulfill these functions.
Scientists define seven functions that must be fulfilled by a living organism. These are:
It is the biology of cells which enables living things to perform all of these functions. Below, we discuss how they make the functions of life possible.
In order to accomplish them, they must have:
The different cell types we will discuss below have different ways of accomplishing these functions.
Because of the millions of diverse species of life on Earth, which grow and change gradually over time, there are countless differences between the countless extant types of cells.
However, here we will look at the two major types of cells, and two important sub-categories of each.
Prokaryotes are the simpler and older of the two major types of cells. Prokaryotes are single-celled organisms. Bacteria and archaebacteria are examples of prokaryotic cells.
Prokaryotic cells have a cell membrane, and one or more layers of additional protection from the outside environment. Many prokaryotes have a cell membrane made of phospholipids, enclosed by a cell wall made of a rigid sugar. The cell wall may be enclosed by another thick capsule made of sugars.
Many prokaryotic cells also have cilia, tails, or other ways in which the cell can control its movement.
Prokaryote cell
These characteristics, as well as the cell wall and capsule, reflect the fact that prokaryotic cells are going it alone in the environment. They are not part of a multicellular organism, which might have whole layers of cells devoted to protecting other cells from the environment, or to creating motion.
Prokaryotic cells have a single chromosome which contains all of the cells essential hereditary material and operating instructions. This single chromosome is usually round. There is no nucleus, or any other internal membranes or organelles. The chromosome just floats in the cells cytoplasm.
Additional genetic traits and information might be contained in other gene units within the cytoplasm, called plasmids, but these are usually genes that are passed back and forth by prokaryotes though the process of horizontal gene transfer, which is when one cell gives genetic material to another. Plasmids contain non-essential DNA that the cell can live without, and which is not necessarily passed on to offspring.
When a prokaryotic cell is ready to reproduce, it makes a copy of its single chromosome. Then the cell splits in half, apportioning one copy of its chromosome and a random assortment of plasmids to each daughter cell.
There are two major types of prokaryotes known to scientists to date: archaebacteria, which are a very old lineage of life with some biochemical differences from bacteria and eukaryotes, and bacteria, sometimes called eubacteria, or true bacteria to differentiate them from archaebacteria.
Bacteria are thought to be more modern descendants of archaebacteria.
Both families have bacteria in the name because the differences between them were not understood prior to the invention of modern biochemical and genetic analysis techniques.
When scientists began to examine the biochemistry and genetics of prokaryotes in detail, they discovered these two very different groups, who probably have different relationships to eukaryotes and different evolutionary histories!
Some scientists think that eukaryotes like humans are more closely related to bacteria, since eukaryotes have similar cell membrane chemistry to bacteria. Others think that archaebacteria are more closely related to us eukaryotes, since they use similar proteins to reproduce their chromosomes.
Still others think that we might be descended from both that eukaryotic cells might have come into existence when archaebacteria started living inside of a bacterial cell, or vice versa! This would explain how we have important genetic and chemical attributes of both, and why we have multiple internal compartments such as the nucleus, chloroplasts, and mitochondria!
Eukaryotic cells are thought to be the most modern major cell type. All multicellular organisms, including you, your cat, and your houseplants, are eukaryotes. Eukaryotic cells seem to have learned to work together to create multicellular organisms, while prokaryotes seem unable to do this.
Eukaryotic cells usually have more than one chromosome, which contains large amounts of genetic information. Within the body of a multicellular organism, different genes within these chromosomes may be switched on and off, allowing for cells that have different traits and perform different functions within the same organism.
Eukaryotic cells also have one or more internal membranes, which has led scientists to the conclusion that eukaryotic cells likely evolved when one or more types of prokaryote began living in symbiotic relationships inside of other cells.
Organelles with interior membranes found in eukaryotic cells typically include:
As mentioned above, archaebacteria are a very old form of prokaryotic cells. Biologists actually put them in their own domain of life, separate from other bacteria.
Key ways in which archaebacteria differ from other bacteria include:
Archaebacterias unique chemical attributes allow them to live in extreme environments, such as superheated water, extremely salty water, and some environments which are toxic to all other life forms.
Scientists became very excited in recent years at the discovery of Lokiarchaeota a type of archaebacteria which shares many genes with eukaryotes that had never before been found in prokaryotic cells!
It is now thought that Lokiarchaeota may be our closest living relative in the prokaryotic world.
You are most likely familiar with the type of bacteria that can make you sick. Indeed, common pathogens like Streptococcus and Staphylococcus are prokaryotic bacterial cells.
But there are also many types of helpful bacteria including those that break down dead waste to turn useless materials into fertile soil, and bacteria that live in our own digestive tract and help us digest food.
Bacterial cells can commonly be found living in symbiotic relationships with multicellular organisms like ourselves, in the soil, and anywhere else thats not too extreme for them to live!
Plant cells are eukaryotic cells that are part of multicellular, photosynthetic organisms.
Plants cells have chloroplast organelles, which contain pigments that absorb photons of light and harvest the energy of those photons.
Chloroplasts have the remarkable ability to turn light energy into cellular fuel, and use this energy to take carbon dioxide from the air and turn it into sugars that can be used by living things as fuel or building material.
In addition to having chloroplasts, plant cells also typically have a cell wall made of a rigid sugars, to enable plant tissues to maintain their upright structures such as leaves, stems, and tree trunks.
Plant cells also have the usual eukaryotic organelles including a nucleus, endoplasmic reticulum, and Golgi apparatus.
For this exercise, lets look at a type of animal cell that is of great importance to you: your own liver cell.
Like all animal cells, it has mitochondria which perform cellular respiration, turning oxygen and sugar into large amounts of ATP to power cellular functions.
It also has the same organelles as most animal cells: a nucleus, endoplasmic reticulum, Golgi apparatus, etc..
But as part of a multicellular organism, your liver cell also expresses unique genes, which give it unique traits and abilities.
Liver cells in particular contain enzymes that break down many toxins, which is what allows the liver to purify your blood and break down dangerous bodily waste.
The liver cell is an excellent example of how multicellular organisms can be more efficient by having different cell types work together.
Your body could not survive without liver cells to break down certain toxins and waste products, but the liver cell itself could not survive without nerve and muscle cells that help you find food, and a digestive tract to break down that food into easily digestible sugars.
And all of these cell types contain the information to make all the other cell types! Its simply a matter of which genes are switched on or off during development.
1. Which of the following is NOT an essential function that all living things must perform?A. A living thing must reproduce.B. A living thing must be able to maintain its internal environment, regardless of external changes.C. A living thing must respond to changes in its environment.D. None of the above.
Answer to Question #1
D is correct. All of the above are essential functions of life!
2. Which of the following is NOT a type of prokaryotic cell?A. ArchaebacteriaB. Staphylococcus bacteriaC. Streptococcus bacteriaD. Liver cell
Answer to Question #2
D is correct. Liver cells are eukaryotic cells, like all cells from multicellular organisms!
3. Which of the following is NOT a eukaryotic cell organelle?A. PlasmidB. NucleusC. MitochondriaD. Chloroplast
Answer to Question #3
B is correct. Plasmids are pieces of DNA that are passed between prokaryotic cells. They are not organelles.
See the article here:
Cell - Definition, Functions, Types and Examples | Biology ...
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]