Dr Feng Zhang, a pioneer in plant genome editing, is developing CRISPR-modified plants as a potential solution to the challenge of feeding our rapidly growing population. Here, CRISPR technology expert, Mollie Schubert, discusses his work.
CRISPR technology has emerged as a much more efficient, precise, and simple technology for crop engineering
With the United Nations (UN) projecting that the world population will reach 8.5 billion by the year 2030 and 9.7 billion by 2050, an increasingly pressing question is how will we provide enough food for this many people without putting more pressure on our already strained resources and planet? One potential solution being investigated is that of crop plants, which can now be precisely enhanced using advanced technologies like CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) engineering, to be more resilient to pests and climatic stresses, as well produce higher yields.
As early as 2007, Dr Feng Zhang, PhD, an Assistant Professor at the Center for Precision Plant Genomics and Department of Plant and Microbial Biology at the University of Minnesota, was looking into ways of improving genome editing technologies for the genetic engineering of plants. Towards the end of 2009, he co-developed an important genetic engineering technology based on transcription activator-like effector nucleases (TALEN), which are enzymes that can be tailored to cut specific sequences of DNA. TALENs greatly improved the efficiency and precision of genetic engineering in plants. Since then, genome editing technologies have evolved rapidly, and CRISPR has emerged as a much more efficient, precise and simple technology to use. Now, Dr Zhang and his team use CRISPR exclusively for their research into improving food crops. He continues to lead projects aimed at not only developing better crops but also at refining CRISPR technologies for application in plants.
The genetic engineering of plant cells has posed some novel challenges compared to working with animal and human cells. For one, the plant genomes tend to contain more adenine (A) and thymine (T) bases than animal or human genomes. This means that Cas9, the CRISPR enzyme first discovered and primarily used in CRISPR experiments, is not able to target large portions of typically AT-rich plant genomes. In addition, plants are routinely grown at lower temperatures than mammalian cells and Cas9 is less active at these lower temperatures. To expand the CRISPR toolkit for scientists such as Dr Zhang, experts have been working to develop and optimize alternative Cas enzymes. Cas12a (formerly known as Cpf1) is one such example.
Cas12a is a CRISPR enzyme that targets AT-rich regions of DNA. However, the original form or wild type version of this enzyme has proven inefficient as its nuclease activity is substantially lower than that of Cas9. To address this characteristic, we created many mutant versions of Cas12a, which were then screened for high-activity variants, using an unbiased bacterial screen. The result was Alt-R A.s. Cas12 Ultra, an enzyme that is as active as Cas9, which is also able to withstand a broad range of temperatures making it ideal for both animal and plant cells.
IDTs Alt-R CRISPR Cas12a (Cpf1) system
Another challenge of plant cell biology for genetic engineering is the presence of the cell wall, a layer of tough cellulose outside of the cell. While it is crucial to protect the cell and provide structural support, the cell wall imposes a barrier to reagents used in genetic engineering, preventing them from entering the cell. One way that Dr Zhang and his team have overcome this is to enzymatically remove the cell wall, leaving the cell surrounded only by its cell membrane. This protoplast cell is thus much more permeable to reagents and as such, more closely resembles a mammalian cell. By working with protoplasts, CRISPR engineering can be performed at much higher throughput, which will be necessary for applications like functional genomic and expedited crop improvement.
A final hurdle in delivering genetic engineering reagents efficiently to precisely target DNA has been overcome through the direct delivery of ribonucleoproteins (RNPs). These greatly simplify genetic engineering and are used by Dr Zhang and his team as a key component of their experiments. Moreover, being commercially available, RNPs provide reliable editing precision and improve the reproducibility of CRISPR experiments. A further advantage of RNPs is that they facilitate genome editing in such a way that results in a transgene-free product. This means that the product will likely not be designated as a genetically modified organism (GMO) by regulatory agencies.
All these advances and refinements are applied by Dr Zhang to the development of new and improved crop plants. He and his team are using CRISPR to engineer crops with important traits, such as greater yield. Crops with higher productivity is the number one goal of plant breeders, as this is and always has been and increasingly will be essential for all crops. Beyond productivity, variants are also being developed with the other desirable traits, such as herbicide tolerance and insect resistance. A growing concern is also being addressed through the development of crops that are better able to cope with climatic stresses, such as variants with drought or flood tolerance.
Despite all the research and development going into the improvement of crop plants, there is yet one other critical consideration. Public acceptance of foods produced using CRISPR-engineered crops is absolutely vital if this avenue of research is to help solve the worlds food crisis. To achieve this, scientists, including Dr Zhang, are going beyond the engineering of traits, such as insect resistance in crops. He is focused on developing crops that are better for human health, for example with soybeans that contain no trans-fat but more healthy fat that is crucial for protecting the heart and brain cells. By putting consumers first and focusing on the development of traits that offer health benefits for consumers, the hope is the threshold for public acceptance will be lower. This will of course need to be coupled by information and education so that consumers are empowered to make informed decisions.
In fact, the first gene-edited food is already on the market. An oil made from soybeans that have been engineered using TALENs to contain no trans fats is being sold to companies in the food service industry. This non-GMO oil has been developed and manufactured by Calyxt, the Minnesota-based company that Dr Zhang co-founded many years ago. Although he has since moved on to pursue research in the public sector, he continues to watch with interest the anticipated launches of Calyxt pipeline products like high-fibre wheat and reduced-browning potatoes. We too look forward to seeing what Dr Zhang and his team will come up with next, both in terms of advancing CRISPR technologies for plant engineering, as well as hardier and more productive food crops that could help feed the world.
About the author
Mollie Schubert is a Staff Scientist in the molecular genetics research group at Integrated DNA Technologies (IDT). Mollie received her masters degree in biochemistry from Iowa State University and has been at IDT since 2013, where she has focused on studying CRISPR gene editing. Specifically, this has included high-throughput screening of CRISPR-Cas9 guides for the development of a site selection tool, optimising the composition and delivery of synthetic RNA reagents complexed to recombinant CRISPR nucleases, and developing methods for efficient gene editing with a focus on improvements to homology directed repair.
Read the rest here:
Could CRISPR-engineered crops help solve the world's food crisis? - New Food
- The biotech bi-weekly: optimizing qPCR and spatial biology research, making cell cultivation more sustainable and ushering in a new era of drug... - March 5th, 2025 [March 5th, 2025]
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]