Aug 7th 2021
THE CHEMICAL reactions on which life depends need a place to happen. That place is the cell. All the things which biology recognises as indisputably alive are either cells or conglomerations of cells (viruses fall into disputable territory). Since the middle of the 19th century the cell has been seen as the basic unit of life.
Your browser does not support the
Enjoy more audio and podcasts on iOS or Android.
A cell requires something to keep its insides in and the outside out. That is the role of the cell membrane, a flexible film made largely of lipids. These are smallish tadpole-shaped molecules with heads that are comfortable in water and twin tails that shun it. When put into a watery solution they naturally form double layers in which the water-tolerant heads are on the outside and the water-wary bits on the inside. Some plant, fungal and bacterial cells employ more rigid structures, called cell walls, as further fortifications beyond their membranes. But it is the membrane which defines the cell.
What is more, the disposition of membranes determines what sort of cell it is. Some creatures use membranes chiefly to define their perimeters. These are called prokaryotes, and come in two varieties, bacteria and archaea. In others they are also used to create structures within cells, notably a nucleus to contain the DNA on which genes are written. Such cells may have ten or 20 times more membrane within them than they have defining their surfaces. They are called eukaryotic, Greek for truly nucleated. Creatures made from them are eukaryotes.
The worlds prokaryotic cells vastly outnumber their eukaryotic cousins. Your own body has roughly as many single-celled prokaryotes living on and inside it (mostly in the gut) as it has eukaryotic cells making up muscles, nerves, bones, blood and so on. Some parts of Earths biosphere, such as the ocean floors, contain more or less nothing but prokaryotic life.
But almost everything you have ever looked at and recognised as aliveall the animals, plants, fungi and algaehas been composed of eukaryotic cells. Such cells are typically a lot larger than almost all prokaryotic ones and are capable of a far greater diversity in both form and function. Their versatility is seen in the wide range of shapes they take, from the conjoined starbursts of nerve cells to the creeping mutable blobbiness of amoebae.
Even prokaryotic cells, though, are big compared with the molecules they contain. A bacterium two millionths of a metre long encompasses around 3m protein molecules as well as the DNA which describes them, the RNA necessary to make use of those descriptions and the various smaller molecules that proteins stick together and break apart in the course of their duties (see previous Biology brief). The membrane of such a bacterium, moreover, contains around 20m lipid molecules.
But if you were to synthesise all the molecules found in that bacterium in a laboratory (quite possible, in theory) and pop them into a bacterium-sized bag you would not get a bacterium. You would get an itsy bitsy mess. A cell is not just a set of contents. It is also a set of processes running alongside each other. The only way to create a cell in which all the necessary processes are up and running is to start off with another such cell in which they are already doing so.
Feed a bacterium with the nutrients it needs and as it grows it will synthesise a copy of the DNA molecule on which its genome is stored. When it is big enough to have made a complete copy of that DNA it will split into two, with one DNA ending up in one cell, and the other in the other.
As it is for bacteria, so it is, mutatis mutandis, for all other life, for ever and ever, amen. Life is made of cells, and cells from pre-existing cells. The 30 trillion cells of which a human body is composed can in almost every case be traced back to the single fertilised egg which started it all (the exception is a condition known as chimerism in which two embryos fuse in the womb early on in development).
Of all the processes that continue from cell to cell as life goes on, none is more fundamental than those which provide lifes energy. These are completely dependent on the membranes in cells. Conditions on the two sides of a membrane will almost always be different; different molecules will be present in different concentrations. The laws of thermodynamics, though, take a dim view of different concentrations of something being next to each other. Small molecules and ions that are more frequent on one side of that membrane than the other will diffuse across it in an attempt to even things up. Proteins embedded in such membranes pump molecules in the opposite direction to maintain the distinction between inside and out.
It is by setting up a gradient of hydrogen ionshydrogen atoms with their electrons pulled offacross a membrane that living things put energy into a chemical form which they can use. This process depends on sets of proteins called electron-transport chains. These proteins are embedded in the membrane.
Electron-transport-chain proteins pass electrons to each other in a way that causes hydrogen ions on the inside of the membrane to get moved to the outside. The ions thus build up outside, which means that natures tendency to even out concentrations requires some of them to get back inside. This they do by means of a magnificent protein called ATP synthase, or just ATPase. Molecules of ATPase provide channels through the membrane which it is easy for the hydrogen ions to flow through. This flow yields usable energy, like the flow of water through a watermill.
That is not an idle metaphor. ATPase has several parts, one of which can rotate with respect to the others. As the ions flow through the protein they spin this rotor at a speed of 6,000rpm. If you could hear them at work they would be humming at something like the G two octaves below middle C. Another part of the molecule uses the kinetic energy of this spinning rotor to affix phosphate ions to a molecule called adenosine diphosphate (ADP), thus making adenosine triphosphate, or ATPcell biologys near-universal energy carrier.
In almost all instances where a cellular process requires energy, that energy is provided by breaking ATP back down into ADP. Adding an amino acid to a growing protein uses up roughly five ATPs. Synthesising membrane lipids costs about one ATP for every two carbon atoms used. A bacterium doubling in size uses about 10bn ATPs to build all the molecules it needs, meaning every one of the 10m or so ADP molecules the bacterium contains is turned into ATP and broken back down again 1,000 times during the process.
To keep the ATPase whirring, the cell requires a constant flow of electrons along its membrane-bound electron-transfer chains. There are two ways of creating such flows: respiration and photosynthesis.
Respiration breaks molecules of glucose down into carbon dioxide and water through a suite of reactions called the citric-acid cycle. A glucose-molecules worth of electrons typically pushes ten hydrogen ions across the membrane in which the respiratory electron-transfer chain is embedded. As they flow back through the ATPase they can generate 20 ATPs.
Photosynthesis uses the energy of sunlight to liberate electrons from water molecules, thus creating oxygen and also hydrogen ions ready for pushing across the membrane. Some of the ATP made this way powers a process that combines those ions with carbon-dioxide. A few more chemical reactions produce a sugar such as glucose, which then goes on to be built into all the other molecules from which life is made. Photosynthesis builds up the worlds biomass; respiration breaks it down.
In a prokaryotic cell the membrane in which electron-transfer proteins sit is that which surrounds the cell. In eukaryotic cells respiration takes place in intracellular structuresorganellescalled mitochondria. These consist of folded-up membranes rich in electron-transport chains. Containing lots of mitochondria (in humans, hundreds or thousands per cell is not uncommon) means such cells can generate a great deal of ATP. If all the membranes in your bodys mitochondria were joined and spread out flat they would cover several football fields.
Under a microscope, some mitochondria look a lot like bacteria. This is not a coincidence, it is a family resemblance. When Earth was a bit more than half its present age, which is to say around 2bn years ago, two prokaryotes, one from the archaea and one from the bacteria, contrived to merge. How, exactly, they did so is far from clear. But that merger created something truly novel: the first eukaryotic cell. Mitochondria are descendants of the bacterium involved, a descent demonstrated incontrovertibly by the fact they still have remnant genomes of their own which are distinctively bacterial. In human beings these little mitochondrial genomes are the only DNA not sequestered on chromosomes in the nucleus.
All the mitochondria in all the eukaryotes in the world date back to that merger. Similarly, chloroplaststhe organelles of photosynthesis found in plants and algaedate back to a later event in which a eukaryote engulfed a photosynthetic bacterium. Many eukaryotes remained single-celled, and do so to this day. But others began forming colonies which permitted division of labour between cells and encouraged the development of specialised body parts called organs. Which are the subject of next weeks Biology brief.
In this series on the levels of life1 Biologys big molecules2 Cells and how to power them*3 Making organs4 The story of a life5 What is a species, anyway?6 Finding living planets
This article appeared in the Schools brief section of the print edition under the headline "Layers of power"
Link:
Defined by their boundaries Cells and how to run them - The Economist
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]