What are exosomes?
Exosomes are a class of cell-derived extracellular vesicles of endosomal origin, and are typically 30-150 nm in diameter the smallest type of extracellular vesicle.1 Enveloped by a lipid bilayer, exosomes are released into the extracellular environment containing a complex cargo of contents derived from the original cell, including proteins, lipids, mRNA, miRNA and DNA.2 Exosomes are defined by how they are formed through the fusion and exocytosis of multivesicular bodies into the extracellular space.
Multivesicular bodies* are unique organelles in the endocytic pathway that function as intermediates between early and late endosomes.3 The main function of multivesicular bodies is to separate components that will be recycled elsewhere from those that will be degraded by lysosomes.4 The vesicles that accumulate within multivesicular bodies are categorized as intraluminal vesicles while inside the cytoplasm and exosomes when released from the cell.
*Confusingly, there is inconsistency in the literature; while some sources differentiate multivesicular bodies from late endosomes, others use the two interchangeably.
Exosomes are of general interest for their role in cell biology, and for their potential therapeutic and diagnostic applications. It was originally thought that exosomes were simply cellular waste products, however their function is now known to extend beyond waste removal. Exosomes represent a novel mode of cell communication and contribute to a spectrum of biological processes in health and disease.2One of the main mechanisms by which exosomes are thought to exert their effects is via the transfer of exosome-associated RNA to recipient cells, where they influence protein machinery. There is growing evidence to support this, such as the identification of intact and functional exosomal RNA in recipient cells and certain RNA-binding proteins have been identified as likely players in the transfer of RNA to target cells.5,6 MicroRNAs and long noncoding RNAs are shuttled by exosomes and alter gene expression while proteins (e.g. heat shock proteins, cytoskeletal proteins, adhesion molecules, membrane transporter and fusion proteins) can directly affect target cells.7,8Exosomes have been described as messengers of both health and disease. While they are essential for normal physiological conditions, they also act to potentiate cellular stress and damage under disease states.2
Multivesicular bodies are a specialized subset of endosomes that contain membrane-bound intraluminal vesicles. Intraluminal vesicles are essentially the precursors of exosomes, and form by budding into the lumen of the multivesicular body. Most intraluminal vesicles fuse with lysosomes for subsequent degradation, while others are released into the extracellular space.9,10 The intraluminal vesicles that are secreted into the extracellular space become exosomes. This release occurs when the multivesicular body fuses with the plasma membrane.
The formation and degradation of exosomes.
This is an active area of research and it is not yet known how exosome release is regulated. However, recent advances in imaging protocols may allow exosome release events to be visualized at high spatiotemporal resolution.11
Exosomes have been implicated in a diverse range of conditions including neurodegenerative diseases, cancer, liver disease and heart failure. Like other microvesicles, the function of exosomes likely depends on the cargo they carry, which is dependent on the cell type in which they were produced.12 Researchers have studied exosomes in disease through a range of approaches, including:
In cancer, exosomes have multiple roles in metastatic spread, drug resistance and angiogenesis. Specifically, exosomes can alter the extracellular matrix to create space for migrating tumor cells.13,14 Several studies also indicate that exosomes can increase the migration, invasion and secretion of cancer cells by influencing genes involved with tumor suppression and extracellular matrix degradation.15,16Through general cell crosstalk, exosomal miRNA and lncRNA affect the progression of lung diseases including chronic obstructive pulmonary disease (COPD), asthma, tuberculosis and interstitial lung diseases. Stressors such as oxidant exposure can influence the secretion and cargo of exosomes, which in turn affect inflammatory reactions.17 Altered exosomal profiles in diseased states also imply a role for exosomes in many other conditions such as in neurodegenerative diseases and mental disorders.18,19Cells exposed to bacteria release exosomes which act like decoys to toxins, suggesting a protective effect during infection.20 In neuronal circuit development, and in many other systems, exosomal signaling is likely to be a sum of overlapping and sometimes opposing signaling networks.21
Exosomes can function as potential biomarkers, as their contents are molecular signatures of their originating cells. Due to the lipid bilayer, exosomal contents are relatively stable and protected against external proteases and other enzymes, making them attractive diagnostic tools. There are increasing reports that profiles of exosomal miRNA and lncRNA differ in patients with certain pathologies, compared with those of healthy people.17 Consequently, exosome-based diagnostic tests are being pursued for the early detection of cancer, diabetes and other diseases.22,23Many exosomal proteins, nucleic acids and lipids are being explored as potential clinically relevant biomarkers.24 Phosphorylation proteins are promising biomarkers that can be separated from exosomal samples even after five years in the freezer25, while exosomal microRNA also appears to be highly stable.26 Exosomes are also highly accessible as they are present in a wide array of biofluids (including blood, urine, saliva, tears, ascites, semen, colostrum, breast milk, amniotic fluid and cerebrospinal fluid), creating many opportunities for liquid biopsies.
Exosomes are being pursued for use in an array of potential therapeutic applications. While externally modified vesicles suffer from toxicity and rapid clearance, membranes of naturally occurring vesicles are better tolerated, offering low immunogenicity and a high resilience in extracellular fluid.27 These naturally-equipped nanovesicles could be therapeutically targeted or engineered as drug delivery systems.
Exosomes bear surface molecules that allow them to be targeted to recipient cells, where they deliver their payload. This could be used to target them to diseased tissues or organs.27 Exosomes may cross the blood-brain barrier, at least under certain conditions28 and could be used to deliver an array of therapies including small molecules, RNA therapies, proteins, viral gene therapy and CRISPR gene-editing.
Different approaches to creating drug-loaded exosomes include27:
Exosomes hold huge potential as a way to complement chimeric antigen receptor T (CAR-T) cells in attacking cancer cells. CAR exosomes, which are released from CAR-T cells, carry CAR on their surface and express a high level of cytotoxic molecules and inhibit tumor growth.29 Cancer cell-derived exosomes carrying associated antigens have also been shown to recruit an antitumor immune response.30
The purification of exosomes is a key challenge in the development of translational tools. Exosomes must be differentiated from other distinct populations of extracellular vesicles, such as microvesicles (which shed from the plasma membrane, also referred to as ectosomes or shedding vesicles) and apoptotic bodies.31 Although ultracentrifugation is regarded as the gold standard for exosome isolation, it has many disadvantages and alternative methods for exosome isolation are currently being sought. Exosome isolation is an active area of research (see Table 1) and many research groups are seeking ways to overcome the disadvantages listed below, while navigating the relevant regulatory hurdles along the way.
Produces a low yield and low purity of the isolated exosomes as other types of extracellular vesicles have similar sedimentation properties.
Low efficiency as it is labor-intensive, time-consuming and requires a large amount of sample. specialized equipment. High centrifugal force can damage exosome integrity
See the article here:
Exosomes: Definition, Function and Use in Therapy - Technology Networks
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]