April 6, 2023
A study published in Cell Stem Cell looks at the generation of embryo-like structures from monkey embryonic stem cells.
Prof Magdalena Zernicka-Goetz, Bren Professor of Biology and Biological Engineering, California Institute of Technology; and Professor of Mammalian Development and Stem Cell Biology, University of Cambridge, said:
This is an exciting development building on work from our own and other labs showing the importance of establishing interactions between embryonic and extra-embryonic stem cells to establish models of the mammalian embryo at pre-and early post-implantation stages. The excitement of this study is not only that embryos generated from monkey stem cells provide a close model for human embryos, but monkeys are also experimentally tractable.
The authors follow approaches that have been previously used to direct embryonic stem cells into a naive state, and then use treatments that allow the nave monkey ES cells to form extra-embryonic cell types. Together these cells assemble into blastoids, structures resembling blastocysts, that are able to develop in vitro into structures with a striking resemblance to the embryonic disc at gastrulation, both in morphology and gene expression. The blastoids also appear to implant into foster monkey mothers but, in common with similar structures in the mouse, development appears restricted.
This study is a hugely encouraging development in the study of primate embryo models.
The paper is excellent and an important step forward but still the stem cell derived embryos have a limited developmental potential, as the authors state themselves. Nevertheless, it is an important step in the very exciting field of enormous potential for understanding how the embryo develops and why so many pregnancies fail.
Prof Roger Sturmey, Professor of Reproductive Medicine, Hull York Medical School, University of Hull, said:
The work by Li and colleagues is an impressive technical achievement that has demonstrated the possibility that embryonic stem cells from a primate can be persuaded to form structures that mirror many features of early embryos.
Similar achievements have already been reported in other species, however this work assesses the primate embryo-like structures in detail and gives new insights into how the cell lineages families of cells that constitute the early embryo can be generated from stem cells.
Remarkably, when cultured in a laboatory, the embryo-like structures are able to replicate a number of key developmental features, most notably the formation of cells that resemble the primordial germ cells the cells that can produce gametes as well as the formation of a structure similar to the so-called primitive streak. When transferred into a recipient macaque uterus, these embryo-like structures were able to generate components of a pregnancy response, but were unable to develop, indicating that while these structures do share many features with competent embryos, there are still aspects of early development that differ between competent embryos and stem-cell derived models, preventing full development.
The work by Li and colleagues will offer important new tools in our understanding of the earliest stages of embryo development, but also highlight the need for guidance in this area, something that scientists in the UK are actively working on.
Prof Alfonso Martinez Arias, ICREA Senior Research Professor, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), said:
This is a timely study.
About half of human pregnancies fail during the proliferation of the zygote and the implantation of the blastocyst. Understanding the causes of this failure rate will impact human fertility and IVF success. In part to address this need, over the last few years, a number of Embryonic Stem (ES) cell models of early mammalian development have been created in the lab. Amidst these, mouse and human blastoids mimic mammalian blastocysts and as such can play an important role in understanding the process of implantation. Blastoids have been derived from mouse and human ES cells.
For these studies to go forward there is a need to develop a proper test for the function of the blastocyst: its implantation into the uterus. In the case of mouse blastoids this can be tested by implanting them into females. However, there is no such a test for human blastoids since, for obvious reasons, it is not possible to implant them into a human uterus. And yet there is a need to develop a system to study these structures in humans. Mouse reproductive biology and implantation are very different from human, which means that while an excellent system to find principles, the mouse is not useful for the specifics of this process; and this is what matters. It is this vacuum of a system to study human implantation and peri-implantation development that is addressed in the present study.
Following protocols established for human blastoids, macaque blastoids are made from nave stem cells and their potential is tested in two ways. One, by culturing them in vitro up to gastrulation stages and the other, by placing them in the uterus of a macaque foster mother. The idea behind this system is that it has reduced ethical barriers compared to human and therefore might provide an experimental system to test the potential of blastoids fully and, in the long term, to study infertility. The work is well conducted and the result is clear: although at the level of single cells macaque blastoids bear a strong resemblance to blastocysts, they do not behave as blastocysts. Although they implant and initiate gastrulation, they do not reach the end of this process. In vitro, blastoids cultured to form an epiblast and to undergo gastrulation, display progressive problems over time and, though they reach early stages of gastrulation, it is difficult to see in their data how faithful they are to an early gastrula. In one important experiment they implant some of these into female macaques and follow their progress with ultrasound. It appears as if they might perform well in the early stages of implantation, and the release of progesterone is a sign that something has gone well, but then, they disappear after about a week.
So, the important result of this work is that we are not close to generating blastoids that can be recognised as blastocysts by the mother. Definitely an important proof of principle but the lesson is that there is work to do.
An important difference between a blastoid and a blatocyst is their origin. The blastocyst in the egg, the blastoid in the ES cells. There might be elements in the oocyte that are important for the viability of the blastocysts and that will not be provided by the ES cells. Furthermore, if about 50% of conceptions fail at implantation, it is difficult to gauge whether the failure of the high level goal of the experiment (long term development in the womb) is due to defects in the blastoid system or whether the failure mirrors the natural situation; eight experimental subjects, the numbers of the experiment, are not sufficient to make a judgement. Only more experiments will decide and the one reported here, within well established ethical footprints, is definitely one to watch.
Dr Darius Widera, Associate Professor in Stem Cell Biology and Regenerative Medicine, University of Reading, said:
This is an interesting study that demonstrates the successful generation of embryo-like structures from monkey embryonic stem cells. These structures resembled natural early embryonic structures and could generate cell types of all three germ layers. Although similar studies have been conducted using human stem cells, this is the first report showing that (in this case, monkey) embryo-like structures can induce signs of pregnancy if transplanted into females. Therefore, the method could be used as a model of primate and human development and potentially provide new insights into certain factors that contribute to miscarriages in humans.
However, the study has some limitations. Only 3 out of 8 embryo-like structures were successfully implanted into female monkeys, and none of these persisted for more than one week. Thus, the structures do not have full developmental potential.
In addition, the ethical implications of embryonic stem cell research in monkeys are complex. Primates are intelligent, social animals with complex cognitive and emotional lives. Therefore, it is important to carefully consider both the potential benefits and the ethical impact of primate embryonic stem cell research.
Prof Robin Lovell-Badge FRS FMedSci, Group Leader, Francis Crick Institute, said:
The paper by Jie Li et al is another demonstration of the remarkable ability of pluripotent stem cells, in this case embryonic stem cells derived from early Macaque (non-human primate) embryos, to self-organise and begin a process of embryo formation in culture that mirrors that of normal Macaque embryos. However, the paper also shows that these stem cell-based embryo models are not entirely normal they could be implanted in female macaques, appear to initiate a pregnancy, but then fail soon after.
The authors were able to culture these stem cell-based embryo models, which they refer to as blastoids, through to gastrulation stages, equivalent to post-implantation embryos developing in a uterus, with good signs of development of all the main extraembryonic and embryonic tissues, where the latter included ectoderm, mesoderm and endoderm organised in a similar fashion to normal embryos. They could also demonstrate the presence of primordial germ cell-like cells and cells that are early progenitors of the blood system. These stages would be equivalent to those of human embryos at about 16 -18 days of development, beyond the 14 day limit (or the beginning of gastrulation) which is the maximum period normal human embryos are allowed to be cultured by law in the UK and some other countries.
It has been shown by others that human pluripotent stem cells can also be used to form blastoids, but to date such cultures have been stopped prior to gastrulation, but the paper by Li et al suggests that they could indeed be taken beyond this and provide valuable information about these early stages of human development that are otherwise very difficult to obtain. The data from the Macaque embryos and blastoid cultures may also help to understand aspects of human development, but without direct comparisons this will always be tentative, given how much mammalian embryos can vary at these stages.
These embryo models are referred to as integrated stem cell-based embryo models because they include extraembryonic tissues that normally give rise to the placenta and yolk sac that in a normal conceptus would permit implantation into the uterus and support the development of the embryo proper. So how much like a real embryo are these Macaque blastoids and could they implant and develop much further in a uterus? Although all the detailed comparisons presented in the paper of gene expression in the various cell types between normal Macaque embryos and the embryo models suggests that they can be very similar, the proportion of the blastoids reaching advanced stages was very low, indicating that most are not normal, and those that did still showed some differences. Moreover, while some could implant, begin to develop some complexity, and induce a typical response in the host uterus and lead to production of the typical pregnancy hormones, chorionic gonadotrophin and progesterone, the embryos all failed before gastrulation. This suggests that they failed to form fully functional extraembryonic tissues that could adequately support the embryo and that these could not give rise to a placenta, which would be essential for more complex development. It is likely that the same would be true for human integrated stem cell-based embryo models, although it would be unethical and illegal (in the UK) to attempt to implant these into a woman.
It seems likely that the culture methods for these integrated stem cell-based embryo models will be improved, and who knows it may eventually be possible to have them implant and develop normally, but the failure of this to happen as reported in this paper will give regulators some breathing space to develop appropriate rules for the culture of such human models, notably whether they can be taken beyond the equivalent of gastrulation stages, which would be of immense importance in helping to understand not just normal development of the human embryo, but what so often goes wrong and leads to embryo failure and congenital disorders.
Cynomolgus monkey embryo model captures gastrulation and early pregnancy by Jie Li et al. was published in Cell Stem Cell at 16:00 UK time on Thursday 6 April 2023.
DOI: 10.1016/j.stem.2023.03.009
Declared interests
Prof Magdalena Zernicka-Goetz: I have no conflict of interest to declare.
Prof Roger Sturmey: None.
Prof Alfonso Martinez Arias: I have no conflict of interests.
Dr Darius Widera: I have no conflict of interest to declare.
Prof Robin Lovell-Badge: I have no conflicts of interest to declare, except I do serve on the HFEAs Scientific and Clinical Advances Advisory Committee and I am a member of their Legislative Reform Advisory Group.
The rest is here:
expert reaction to study looking at creating embryo-like structures ... - Science Media Centre
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]
- Mendus redeems the outstanding convertible bonds from Negma ... - GlobeNewswire - April 8th, 2023 [April 8th, 2023]