How proteins bring together membrane blebs – Phys.Org

July 3, 2017

Researchers have gained new insights into the mechanisms with which certain proteins help the immune defence mechanism in the human body. Pathogens such as viruses or bacteria are wrapped in membrane blebs and rendered harmless there. What are known as guanylate-binding proteins are crucial in this. How they contribute to the process that was investigated by researchers from Ruhr-Universitt Bochum, the Paul-Ehrlich-Institut and the University of Cologne, together with other partners from Erlangen and Geneva.

The team led by Prof Dr Christian Herrmann and Dr Sergii Shydlovskyi from the Bochum cluster of excellence Resolv and Dr Gerrit Praefcke, formerly of the University of Cologne, now at the Paul-Ehrlich-Institut in Langen, reports on the study in the journal Proceedings of the National Academy of Sciences.

Precursor of vesicle fusion

With a combination of cell biology and biochemical experiments, the researchers explored the function of human guanylate-binding protein 1 (hGBP1). In cells, it interacts with the energy storage molecule GTP, from which it can split off one or two phosphate groups, in order to release energy.

In the current study, the researchers discovered that hGBP1 uses energy released during splitting to change its structure: it unveils a lipid anchor. Using this anchor, it can form larger ring-shaped polymers with other hGBP1 proteins. With the aid of artificial vesicles, the team also found that hGBP1 uses the anchor to bind to the vesicle membrane. In this way, it brings together many such membrane blebs, which the researchers assume could be a precursor to vesicle fusion.

Demonstrated in cells

This kind of fusion is crucial for the immune defence mechanism: pathogens are trapped in the human body in vesicles, which merge with certain cell organelles, lysosomes. The latter contain enzymes that degrade pathogens. In the current study, the team also demonstrated that the protein hGBP1 in living cells is actually involved in the signal path, which leads via the lysosomes to the degradation of viruses and bacteria.

Explore further: Research describes missing step in how cells move their cargo

More information: Sergii Shydlovskyi et al. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1620959114

Every time a hormone is released from a cell, every time a neurotransmitter leaps across a synapse to relay a message from one neuron to another, the cell must undergo exocytosis. This is the process responsible for transporting ...

In order for cells to function properly, cargo needs to be constantly transported from one point to another within the cell, like on a goods station. This cargo is located in or on intracellular membranes, called vesicles. ...

Movement of secretory molecules, such as hormones and digestive enzymes, out of the cell is known as exocytosis. This process is guided by SNARE proteins, which help the fusion of secretory vesicles with the plasma membrane. ...

The protein that helps the sperm and egg fuse together in sexual reproduction can also fuse regular cells together. Recent findings by a team of biomedical researchers from the Technion-Israel Institute of Technology, Argentina, ...

Small "bubbles" frequently form on membranes of cells and are taken up into their interior. The process involves EHD proteins - a focus of research by Prof. Oliver Daumke of the MDC. He and his team have now shed light on ...

The many factors that contribute to how cells communicate and function at the most basic level are still not fully understood, but researchers at Baylor College of Medicine have uncovered a mechanism that helps explain how ...

The mass extinction that obliterated three-fourths of life on Earth, including non-avian dinosaurs, set the stage for the swift rise of frogs, a new study shows.

The conventional way of placing protein samples under an electron microscope during cryo-EM experiments may fall flat when it comes to getting the best picture of a protein's structure. In some cases, tilting a sheet of frozen ...

The town of Escalante in southern Utah is no small potatoes when it comes to scientific discovery; a new archaeological finding within its borders may rewrite the story of tuber domestication.

New research into the way that honeybees see colour could pave the way for more accurate cameras in phones, drones and robots.

Researchers have long assumed that habitat fragmentation contributes to extinction risk for animals, but until now, they have not been able to measure it for a major group of animals on a global scale. In a first-of-its-kind ...

Researchers at Dartmouth College have identified how a well-known plant hormone targets genes to regulate plant growth and development. The finding could allow scientists to establish organ-growing stem cells for grains like ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read the original:
How proteins bring together membrane blebs - Phys.Org

Related Posts