Casey Atkins for Nature
Aviv Regev likes to work at the edge of what is possible. In 2011, the computational biologist was collaborating with molecular geneticist Joshua Levin to test a handful of methods for sequencing RNA. The scientists were aiming to push the technologies to the brink of failure and see which performed the best. They processed samples with degraded RNA or vanishingly small amounts of the molecule. Eventually, Levin pointed out that they were sequencing less RNA than appears in a single cell.
To Regev, that sounded like an opportunity. The cell is the basic unit of life and she had long been looking for ways to explore how complex networks of genes operate in individual cells, how those networks can differ and, ultimately, how diverse cell populations work together. The answers to such questions would reveal, in essence, how complex organisms such as humans are built. So, we're like, 'OK, time to give it a try', she says. Regev and Levin, who both work at the Broad Institute of MIT and Harvard in Cambridge, Massachusetts, sequenced the RNA of 18 seemingly identical immune cells from mouse bone marrow, and found that some produced starkly different patterns of gene expression from the rest1. They were acting like two different cell subtypes.
That made Regev want to push even further: to use single-cell sequencing to understand how many different cell types there are in the human body, where they reside and what they do. Her lab has gone from looking at 18 cells at a time to sequencing RNA from hundreds of thousands and combining single-cell analyses with genome editing to see what happens when key regulatory genes are shut down.
The results are already widening the spectrum of known cell types identifying, for example, two new forms of retinal neuron2 and Regev is eager to find more. In late 2016, she helped to launch the International Human Cell Atlas, an ambitious effort to classify and map all of the estimated 37 trillion cells in the human body (see 'To build an atlas'). It is part of a growing interest in characterizing individual cells in many different ways, says Mathias Uhln, a microbiologist at the Royal Institute of Technology in Stockholm: I actually think it's one of the most important life-science projects in history, probably more important than the human genome.
Such broad involvement in ambitious projects is the norm for Regev, says Dana Pe'er, a computational biologist at Memorial Sloan Kettering Cancer Center in New York City, who has known Regev for 18 years. One of the things that makes Aviv special is her enormous bandwidth. I've never met a scientist who thinks so deeply and so innovatively on so many things.
When Regev was an undergraduate at Tel Aviv University in Israel, students had to pick a subject before beginning their studies. But she didn't want to decide. Too many things were interesting, she says. Instead, she chose an advanced interdisciplinary programme that would let her look at lots of subjects and skip a bachelor's degree, going straight to a master's.
A turning point in her undergraduate years came under the tutelage of evolutionary biologist Eva Jablonka. Jablonka has pushed a controversial view of evolution that involves epigenetic inheritance, and Regev says she admired her courage and integrity in the face of criticism. There are many easy paths that you can take, and it's always impressive to see people who choose alternative roads.
Jablonka's class involved solving complicated genetics problems, which Regev loved. She was drawn to the way in which genetics relies on abstract reasoning to reach fundamental scientific conclusions. I got hooked on biology very deeply as a result, she says. Genes became fascinating, but more so how they work with each other. And the first vehicle in which they work with each other is the cell.
Regev did a PhD in computational biology under Ehud Shapiro from the Weizmann Institute of Science in Rehovot, Israel. In 2003 she moved to Harvard University's Bauer Center for Genomics Research in Cambridge, through a unique programme that allows researchers to leapfrog the traditional postdoctoral fellowship and start their own lab. I had my own small group and was completely independent, she says. That allowed her to define her own research questions, and she focused on picking apart genetic networks by looking at the RNA molecules produced by genes in cells. In 2004, she applied this technique to tumours and found gene-expression patterns that were shared across wildly different types of cancer, as well as some that were more specific, such as a group of genes related to growth inhibition that is suppressed in acute lymphoblastic leukaemias3. By 2006, at the age of 35, she had established her lab at the Broad Institute and the Massachusetts Institute of Technology in Cambridge.
At Broad, Regev continued working on how to tease complex information out of RNA sequencing data. In 2009, she published a paper on a type of mouse immune cell called dendritic cells, revealing the gene networks that control how they respond to pathogens4. In 2011, she developed a method that could assemble a complete transcriptome5 all the RNA being transcribed from the genes in a sample without using a reference genome, important when an organism's genome has not been sequenced in any great depth.
It was around this time that Levin mentioned the prospect of sequencing the RNA inside a single cell. Up to that point, single-cell genomics had been almost impossible, because techniques weren't sensitive enough to detect the tiny amount of RNA or DNA inside just one cell. But that began to change around 2011.
The study with the 18 immune cells also dendritic cells was meant to test the method. I had kind of insisted that we do an experiment to prove that when we put the same cell types in, everything comes out the same, says Rahul Satija, Regev's postdoc at the time, who is now at the New York Genome Center in New York City. Instead, he found two very different groups of cell subtypes. Even within one of the groups, individual cells varied surprisingly in their expression of regulatory and immune genes. We saw so much in this one little snapshot, Regev recalls.
I think even right then, Aviv knew, says Satija. When we saw those results, they pointed the way forward to where all this was going to go. They could use the diversity revealed by single-cell genomics to uncover the true range of cell types in an organism, and find out how they were interacting with each other.
In standard genetic sequencing, DNA or RNA is extracted from a blend of many cells to produce an average read-out for the entire population. Regev compares this approach to a fruit smoothie. The colour and taste hint at what is in it, but a single blueberry, or even a dozen, can be easily masked by a carton of strawberries.
Reporter Shamini Bundell finds out what can be learned from studying cells one by one.
You may need a more recent browser or to install the latest version of the Adobe Flash Plugin.
By contrast, single-cell-resolved data is like a fruit salad, Regev says. You can distinguish your blueberries from your blackberries from your raspberries from your pineapples and so on. That promised to expose a range of overlooked cellular variation. Using single-cell genomics to sequence a tumour, biologists could determine which genes were being expressed by malignant cells, which by non-malignant cells and which by blood vessels or immune cells potentially pointing to better ways to attack the cancer.
The technique holds promise for drug development in many diseases. Knowing which genes a potential drug affects is more useful if there's a way to comprehensively check which cells are actively expressing the gene.
Regev was not the only one becoming enamoured with single-cell analyses on a grand scale. Since at least 2012, scientists have been toying with the idea of mapping all human cell types using these techniques. The idea independently arose in several areas of the world at the same time, says Stephen Quake, a bioengineer at Stanford University in California who co-leads the Chan Zuckerberg Biohub. The Biohub, which has been funding various biomedical research projects since September 2016, includes its own cell-atlas project.
Around 2014, Regev started giving talks and workshops on cell mapping. Sarah Teichmann, head of cellular genetics at the Wellcome Trust Sanger Institute in Hinxton, UK, heard about Regev's interest and last year asked her whether she would like to collaborate on building an international human cell atlas project. It would include not just genomics researchers, but also experts in the physiology of various tissues and organ systems.
I would get stressed out of this world, but she doesn't.
Regev leapt at the chance, and she and Teichmann are now co-leaders of the Human Cell Atlas. The idea is to sequence the RNA of every kind of cell in the body, to use those gene-expression profiles to classify cells into types and identify new ones, and to map how all those cells and their molecules are spatially organized.
The project also aims to discover and characterize all the possible cell states in the human body mature and immature, exhausted and fully functioning which will require much more sequencing. Scientists have assumed that there are about 300 major cell types, but Regev suspects that there are many more states and subtypes to explore. The retina alone seems to contain more than 100 subtypes of neuron, Regev says. Currently, consortium members whose labs are already working on immune cells, liver and tumours are coming together to coordinate efforts on these tissues and organs. This is really early days, says Teichmann.
In co-coordinating the Human Cell Atlas project, Regev has wrangled a committee of 28 people from 5 continents and helped to organize meetings for more than 500 scientists. I would get stressed out of this world, but she doesn't, Jablonka says. It's fun to have a vision that's shared with others, Regev says, simply.
It has been unclear how the project would find funding for all its ambitions. But in June, the Chan Zuckerberg Initiative the philanthropic organization in Palo Alto, California, that funds the Biohub contributed an undisclosed amount of money and software-engineering support to the Human Cell Atlas data platform, which will be used to store, analyse and browse project data. Teichmann sees the need for data curation as a key reason to focus on a large, centralized effort instead of many smaller ones. The computational part is at the heart of the project, she says. Uniform data processing, data browsing and so on: that's a clear benefit.
In April, the Chan Zuckerberg Initiative had also accepted applications for one-year pilot projects to test and develop technologies and experimental procedures for the Human Cell Atlas; it is expected to announce which projects it has selected for funding some time soon. The applications were open to everyone, not just scientists who have participated in planning meetings.
Some scientists worry that the atlas will drain both funding and effort from other creative endeavours a critique aimed at many such international big-science projects. There's this tension, says Atray Dixit, a PhD student in Regev's lab. We know they're going to give us something, and they're kind of low-risk in that sense. But they're really expensive. How do we balance that?
Developmental biologist Azim Surani at the University of Cambridge, UK, is not sure that the project will adeptly balance quantity and depth of information. With the Human Cell Atlas, you would have a broad picture rather than a deeper understanding of what the different cell types are and the relationships between them, he says. What is the pain-to-gain ratio here?
Surani also wonders whether single-cell genomics is ready to converge on one big project. Has the technology reached maturity so that you're making the best use of it? he asks. For example, tissue desegregation extracting single cells from tissue without getting a biased sample or damaging the RNA inside is still very difficult, and it might be better for the field, some say, if many groups were to go off in their own directions to find the best solution to this and other technical challenges.
And there are concerns that the project is practically limitless in scope. The definition of a cell type is not very clear, says Uhln, who is director of the Human Protein Atlas an effort to catalogue proteins in normal and cancerous human cells that has been running since 2003. There may be a nearly infinite number of cell types to characterize. Uhln says that the Human Cell Atlas is important and exciting, but adds: We need to be very clear, what is the endpoint?
Regev argues that completion is not the only goal. It's modular: you can break this to pieces, she says. Even if you solve a part of a problem, it's still a meaningful solution. Even if the project just catalogues all the cells in the retina, for example, that's still useful for drug development, she argues. It lends itself to something that can unfold over time.
Regev's focus on the Human Cell Atlas has not distracted her from her more detailed studies of specific cell types. Last December, her group was one of three to publish papers6, 7, 8 in which they used the precision gene-editing tool CRISPRCas9 to turn off transcription factors and other regulatory genes in large batches of cells, and then used single-cell RNA sequencing to observe the effects. Regev's lab calls its technique Perturb-seq6.
The aim is to unpick genetic pathways very precisely, on a much larger scale than has been possible before, by switching off one or more genes in each cell, then assaying how they influence every other gene. This was possible before, for a handful of genes at a time, but Perturb-seq can work on 1,000 or even 10,000 genes at once. The results can reveal how genes regulate each other; they can also show the combined effects of activating or deactivating multiple genes at once, which can't be predicted from each of the genes alone.
Dixit, a co-first author on the paper, says Regev is indefatigable. She held daily project meetings at 6 a.m. in the weeks leading up to the submission. I put in this joke sentence at the end of the supplementary methods a bunch of alliteration just to see if anyone would read that far. She found it, Dixit says. It was 3 a.m. the night before we submitted.
Regev's intensity and focus is accompanied by relentless positivity. I'm one of the fortunate people who love what they do, she says. And she still loves cells. No matter how you look at them, they're just absolutely amazing things.
Read more:
How to build a human cell atlas : Nature News & Comment - Nature.com
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]