In-cell NMR: A new application – Phys.Org

March 8, 2017 (a) Proteins (green) can be endogenously expressed and isotopically labelled in bacteria (b) Exogenous proteins (blue) can be delivered to X. Credit: Enrico Luchinat and Lucia Banci

The structure of biological macromolecules is critical to understanding their function, mode of interaction and relationship with their neighbours, and how physiological processes are altered by mutations or changes in the molecular environment.

Ideally, classical structural biology research should interface more with cellular biology, as it is crucial for the structural data obtained in vitro to be validated within the cellular or tissue context. A true cellular structural biology approach should allow macromolecules to be characterised directly in their native environment. Such an approach would guarantee the high significance of data obtained in vivo or in the cell with the high resolution of a structural technique.

In the Past decade, NMR spectroscopy has been applied to obtain structural and functional information on biological macromolecules inside intact, living cells. The approach, termed "in-cell NMR", utilises the improved resolution and sensitivity of modern high-field NMR spectrometers and exploits selective enrichment of the molecule(s) of interest with NMR-active isotopes.

Since its inception, in-cell NMR has gradually emerged as a possible link between structural and cellular approaches. Being especially suited to investigate the structure and dynamics of macromolecules at atomic resolution, in-cell NMR can fill a critical gap between in vitro-oriented structural techniques such as NMR spectroscopy, X-ray crystallography and single-particle cryo-EM techniques and ultrahigh-resolution cellular imaging techniques, such as cryo-electron tomography.

In a topical review IUCrJ (2017), 4, 108-118 Lucia Banci and her co-worker Enrico Luchinat , both based at the University of Florence, summarise the major advances of in-cell NMR and report the recent developments in the field, with particular focus on its application for studying proteins in eukaryotic and mammalian cells and on the development of cellular solid-state NMR.

Explore further: Catching a glimpse at enzymes on the job

More information: Enrico Luchinat et al, In-cell NMR: a topical review, IUCrJ (2017). DOI: 10.1107/S2052252516020625

AAA+ ATPases are a large family of ubiquitous enzymes with multiple tasks, including the remodelling of the cellular proteome, i.e. the ensemble of proteins in a biological cell. A subfamily, so-called unfoldases, recognize, ...

A team of scientists from MIPT, Research Center Jlich (Germany), and Institut de Biologie Structurale (France) has developed a new approach to membrane protein crystallization. For the first time, the scientists have showed ...

Currently, biologists who study the function of protein nanomachines isolate these complexes outside the cell in test tubes, and then apply in vitro techniques that allow them to observe their structure down to the atomic ...

Using 3-D electron microscopy, structural biologists from the University of Zurich succeeded in elucidating the architecture of the lamina of the cell nucleus at molecular resolution for the first time. This scaffold stabilizes ...

The first three-dimensional (3-D) structure of a human protein complex within intact mammalian cells has been obtained directly by A*STAR scientists. It could provide new opportunities in structural biology, in developing ...

A new study shows that it is possible to use an imaging technique called cryo-electron microscopy (cryo-EM) to view, in atomic detail, the binding of a potential small molecule drug to a key protein in cancer cells. The cryo-EM ...

The International Potato Center (CIP) launched a series of experiments to discover if potatoes can grow under Mars atmospheric conditions and thereby prove they are also able to grow in extreme climates on Earth. This Phase ...

EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human ...

An international research team has discovered a biochemical pathway that is responsible for the development of moss cuticles. These waxy coverings of epidermal cells are the outer layer of plants and protect them from water ...

A new study involving biologists from Monash University Australia has found that despite their very different ancestors, dolphins and crocodiles evolved similarly-shaped skulls to feed on similar prey.

A new study by G. William Arends Professor of Microbiology at the University of Illinois Bill Metcalf with postdoctoral Fellow Dipti Nayak has documented the use of CRISPR-Cas9 mediated genome editing in the third domain ...

Proteins, those basic components of cells and tissues, carry out many biological functions by working with partners in networks. The dynamic nature of these networks - where proteins interact with different partners at different ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the original post:
In-cell NMR: A new application - Phys.Org

Related Posts