How many of the thousands of newly discovered molecules finally become drugs which effectively cure patients? Unfortunately, only a very low percentage (recently quantified around 12%). Why do so many candidate drugs fail before entering the market, although they show promising results at a research level? A recent paper indicates a lack of specific drug efficacy as the primary cause of trial failure in late phase development, failures that can be reduced by a more efficient screening of candidate drugs in early phases.
However, current 2D in vitro strategies, mostly based on cell lines cultured on 2D rigid substrates, represent the cheapest and easiest drug screening tool, but with major drawbacks as low-precision and un-natural environments. In vivo experimentation provides higher systemic physiological relevance, although associated to high running costs, increasing ethical issues and limited analytical depth. Moreover, animal models have been increasingly questioned about their power to faithfully reproduce human biological mechanisms.
Thus, alternative models better predicting the outcomes of new molecules in patients are desperately needed. Recently, innovative techniques such as microfluidics and tissue engineering have been emerging, aiming at reproducing the complex architecture and function of native human tissues. So-called organs-on-a-chip or microphysiological systems have recently been defined as microfabricated cell culture devices designed to model the functional units of human organs in vitro, thus representing an ideal platform for improving the predictability of drugs and biological therapies efficacy and safety in humans.
Our group believes that microphysiological systems hold the key to next generation health solutions. Following our 10+ years experience and specialisation in this area, we have emerged in the development of microphysiological systems in the musculoskeletal field, for platforms to study physio-pathological mechanisms and to perform reliable screening and testing of drugs for diagnostic and therapeutic aims.
In particular, these systems are used for currently uncurable bone diseases such as bone tumours and metastases, but also for pathological conditions of muscle tissue such as fibrosis, disabling pathologies (such as osteoarthritis), as well as ageing and metabolic diseases of the musculoskeletal system. This is achieved by reproducing human tissue districts focusing on high-fidelity biomimicking models through human multi-cellular and architecturally accurate models (i.e. whole joint model including all parts as bone, cartilage, synovium, vascular, immune in a single model).
The first example of a microfluidic, vascularised, human bone model for the study of bone metastatic invasion has been published on Biomaterials in 2014 and highlighted in The Economist journal. With this work, in collaboration with prof R Kamm from MIT, we were able to monitor the invasion of breast cancer cells in a bone-like matrix and the formation of micro-metastases in real time. In a subsequent work, we reproduced organotypic metastases from breast cancer, comparing engineered bone-like and muscle-like environments, and demonstrating the secretion of molecules in the muscle environment able to counteract tumour invasion.
To better mimic the metastatic process, blood and immune cells were also included in our recent models, demonstrating that the presence of blood cells (particularly platelet) increase metastatisation and that a drug used as antiaggregant clinical therapy can also decrease cancer invasion.
Microfluidic multi-tissue models have been also designed to investigate diseases affecting the joints, such as osteoarthritis.
A multichannel device, including the tissues of the native joint, as a cartilage compartment, separated from a compartment embedding synovial fibroblasts by a channel containing synovial fluid has been developed. The device mimicked the inflammatory processes at the basis of osteoarthritis and is being exploited to evaluate potential biological therapies, such as the injection of stem cells in the joint.
Microfluidics is a powerful technology however it comes with its own drawbacks too as the microenvironment into a microfluidic chip is not properly 3D, being able to host tissues with a thickness of just few cells (between 10 and 15), and thus also a scarce availability of biological material which makes it difficult to apply standard analytical techniques.
To overcome these limitations, in our lab we are exploiting both Micro- and Bio- fabrication techniques to generate miniaturised multicellular microphysiological systems, bigger and more user friendly than microfluidic ones which allow you to more accurately reproduce the 3D microarchitecture of native musculoskeletal tissues.
In 2016 we generated a mm-scale construct, embedding osteoblasts, osteoclasts, vascular cells and calcium nanoparticles, to recreate the mineral part of the bone. This represented the first example of a bone-remodelling microscale model able to reproduce the balanced deposition and resorption of minerals by bone cells, recently further improved with the addition of macrophages. To test the potential of the device as a drug screening platform, we added breast cancer cells in the bone-like matrix and effects of different drugs have recently been tested. The model showed a significantly better reproduction of cancer cell resistance to drugs as compared to standard in vitro models.
Beside bone, also a hierarchical microscale model of skeletal muscle has been described with multiple human muscle fibres engineered in a 3D gel. Here we showed for the first time the formation of the typical fibroblast layer surrounding each fibre intertwined with a microvascular network. Fibroblasts isolated from dystrophic patients and inserted in our model naturally exerted the traditional onset of fibrosis characteristics as compared to standard models requiring external induction for such behaviour.
To summarise, microphysiological systems represent the leading approach to achieve more reliable preclinical testing platforms for the quantification of drug efficacy, as compared to standard 2D models. However, further challenges lie ahead for their widespread use. In basic and translational research towards clinical application, a better understanding of pathophysiological mechanisms is mandatory.
Thus, faithful reproduction of complex native-like microenvironments should be achieved, including appropriate physical stimuli, whereby the exploitation of advanced microfabrication techniques can be of help towards this goal. Biofabrication of functional units of human tissues and organs is fundamental also for pharma companies, along with relevant automation and ease of use, to achieve more reliable readouts of novel drugs and highly predictive tests for biological therapies.
Depending on its final application, the complexity level of 3D in vitro models should be tailored to sufficiently improve relevance but without unnecessary additions and increasing costs. Anyhow, considering the multiple issues involved in the development of microphysiological systems, multidisciplinary expertise and knowhow in biological and bioengineering fields are mandatory, and fostering of translational researchers training will be needed to guarantee the emergence of such next generation systems.
Lastly, the huge amount of heterogenous data originating from such complex models need to be analysed with systems biology techniques, based on machine learning algorithms and similarly advanced techniques gathered from big data management. Fuelling research in these fields can help the research community in achieving better models of human organs, thus leading to drugs more effectively impacting patient care.
Matteo MorettiHead Regenerative Medicine Technologies LabUnit di Ortopedia e Traumatologia, Ente Ospedaliero CantonaleLugano (CH)+41(0)918117076Matteo.moretti@eoc.chhttps://www.eoc.ch/
Originally posted here:
Microphysiological systems: advancing drug and biological therapies discovery - SciTech Europa
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]