Cell cultural flasks of Peyton Rous, circa 1936. Photo: Lubosh Stepanek, Courtesy of the Rita and Frits Markus Library, The Rockefeller University
I spent the second half of the 1970s at the Microbiology and Cell Biology Laboratory at the Indian Institute of Science, Bengaluru, immersed in studying the lysogenic mycobacteriophage I3. Bacteriophages are viruses that infect bacteria and use the host bacterial machinery to make copies of themselves. This one infects Mycobacteria, hence it is a mycobacteriophage. Lytic bacteriophages burst open the host-bacterium to release their offspring, infecting other healthy bacteria and continuing the cycle. On the other hand, lysogenic bacteriophages have a dual strategy: they can either follow the lytic life cycle right away or lie low for many bacterial generations before they make copies of themselves and burst the host cell.
As I have described in more detail elsewhere and repeat here in part, as an undergraduate at Central College, I fell in love with two subjects animal behaviour and molecular biology, neither of which were taught with any degree of passion or competence by my teachers. My love for animal behaviour was born from reading King Solomons Ring by the Nobel laureate Konrad Lorenz and sustained by my discovery of many colonies of the Indian paper wasp Ropalidia marginata on the windows of the zoology and botany departments. And my love for molecular biology was born from reading The Double Helix by another Nobel laureate, James D. Watson and was sustained by my discovery in the pages of journals in the library, of an exquisite organism, the lysogenic bacteriophage Lambda. But I soon found the local avatar of the bacteriophage lambda. One day, I jumped up from my chair in the library when I read in the pages of Nature [Vol 228, October 17, 1970] that C.V. Sunder Raj of the Microbiology and Pharmacology Laboratory of the Institute had discovered our very own Indian lysogenic bacteriophage. I promptly came to see him, and he showed me beautiful Petri plates in which the mycobacteriophage I3 had made transparent holes on a lawn of the bacterium Mycobacterium smegmatis. The I in I3 was meant to denote Isolate 3, but I had no qualms about thinking of the I as indicating India.
Advertisement
Advertisement
In 1974, at the age of 21, I was lucky enough to be admitted to a single vacancy in the interdisciplinary field of molecular biology. I joined the by-now re-christened, Microbiology and Cell Biology Laboratory for my PhD. I spent the next five years studying the alter ego of bacteriophage lambda, our own bacteriophage I3. Imagine my delight when I saw that the Institute campus was also home to innumerable colonies of my other love, the Indian paper wasp R. marginata. During the next five years, I made bacteriophage I3 the subject of my professional study, and the paper wasp R. marginata the subject of my hobby.
As I began my PhD enthusiastically on my favourite kind of bacteriophage, while my supervisor was away on a sabbatical leave abroad, I already encountered a major roadblock. To obtain large quantities of any bacteriophage, it is routine practice to grow the host bacteria in flasks, infect them with a small quantity of the bacteriophage, and let the bacteriophage multiply.
The author conducting experiments during his PhD at the Microbiology and Cell Biology Laboratory, Indian Institute of Science, Bangalore, 1974-1979.
In my case, the host bacterium of I3 was Mycobacterium smegmatis which our laboratory was able to grow in flasks, but I3 would not grow in the flasks. The only way to grow I3 was on a lawn of the host bacterium on small Petri plates, but this was a very tedious and laborious procedure. So, I made it my first challenge to make I3 grow in the flasks. After some very exciting detective work and testing many hypotheses, I discovered that the culprit was the detergent Tween-80 which was routinely added to the culture medium to prevent M. smegmatis from clumping together. I was even able to show that in the presence of Tween-80, the bacteriophage was able to adsorb onto the bacteria but could not inject its DNA into the host. And once allowed to inject its DNA, it then grew well even if Tween-80 was added later. Thus, I was able to grow large quantities of I3 by delaying the addition of Tween-80 after the bacteriophage had injected its DNA into the host bacterium. This was a great lesson in taking on a roadblock as a challenging part of the research. Being already of an ecological and evolutionary bent of mind, I went on to investigate such questions as how different individual bacteriophages cooperated and competed with each other when they were inside the host bacterium.
One floor below my laboratory, a dear friend Arun Srivastava was similarly engaged in studying the Rous Sarcoma Virus (RSV). While my main aim was to get my bacteriophages to grow as rapidly as possible, Aruns main aim, contrarily, was to find ways of inhibiting the growth of his viruses, at least in cell cultures. The reason for this is obvious, of course, because RSV is a tumour-causing virus, and the discovery of drugs that could slow or inhibit viral growth would have great potential in cancer treatment. Arun had a novel approach. His mentor professor T. Ramakrishnan had been working on Isoniazid, a potential anti-tubercular drug. A unique property of isoniazid is that it binds to metals. The enzyme reverse transcriptase (see below), which helps RSV to reproduce, had recently been shown to contain zinc. The idea was to see if isoniazid inactivated the reverse transcriptase by binding to its zinc. In a recent issue of Resonance journal of science education published by the Indian Academy of Sciences, Arun Srivastava has given a moving account of that research. Arun Srivastava is now Division Chief and George H. Kitzman Professor at the Department of Pediatrics in the College of Medicine, University of Florida, US. Dr Arun Srivastava at the lab workbench attempting to infect HeLa cells with a genome-modified adeno associated virus (AAV) in search of more effective gene therapy on March 22, 2023. Photo courtesy: Arun Srivastava
Arun and I, and a few other PhD-mates, were mesmerised by the viruses, both bacterial and animal. We lived and dreamed of phages and viruses and read every printed page we could find about, T4, X174, RSV, RPV and NDV, as much in love with their names as with their biology and life cycles, their replication and coat proteins, their prophages and proviruses. In our youthful exuberance, we believed we knew nearly everything about these magical creatures, which were so charmingly neither alive nor dead. How wrong we were!
We did not know their tales. This I realised only after reading A Tale of Two Viruses by Neeraja Sankaran. Reading Neerajas book was a fortuitous event because I got an invitation, out of the blue, from a little-known (at least to me) online publication called Inference to review Neeraja Sankarans book, which I did with great pleasure. Some of what I write below is reproduced with permission from my article in Inference. The Oxford English dictionary defines a tale as a narrative or story, especially one that is imaginatively recounted. A Tale of Two Viruses fits this definition well. Neeraja Sankarans principal imaginative contribution is to draw parallels between the tales of her two protagonists, the bacteriophages, and the Rous Sarcoma Virus (RSV), my and Aruns study subjects, as it happens. Her juxtaposition of these two tales adds value and colour to each protagonists tale and creates a whole new tale.
Neerajas tale begins in about the second decade of the 20th century with the discovery of bacteriophages and RSV and extends forward by about half a century. But our journey with her is neither restricted to this period nor do we traverse the period chronologically. We are taken back several centuries before the present to set the context and ferried back and forth across time to benefit from hindsight. But because her narrative structure is so clearly explained in the Introduction, we are never lost. Neeraja Sankaran and her book A Tale of Two Viruses,published by the University of Pittsburgh Press in (2021).
Neeraja opens with an inspired description of the birth pangs of RSV at the hands of Peyton Rous, an American pathologist working at Rockefeller University in New York, and of bacteriophages at the hands of Frederick Twort, a medical researcher in London and Flix dHerelle, a kind of free-lance scientist working at the Pasteur Institute in Paris. With all these three pioneers, it appears that they themselves were more on the right track than most of their peers in understanding the nature of the substances they had found; so much for peer review! Two anecdotes especially struck me as they illustrate two contrasting benefits of paying attention to the history of science.
A young Peyton Rous, who won the Nobel Prize in Physiology or Medicine in 1966for his discovery of tumour-inducing viruses, was advised by his distinguished mentor William Welch whatever you do, do not commit yourself to the cancer problem. A knowledge of history might make some of us a little more modest in our confidence in predicting the future and especially in second-guessing the abilities of our young mentees. In an apparent act of carelessness, Simon Flexner, the founding director of the Rockefeller Institute, attributed the early discovery of RSV jointly to Rous and his former assistant, James B. Murphy. Rous wrote in protest:
You said that Rous and Murphy demonstrated the existence of the filterable agent causing the chicken tumour. Now, the fact is that I carried out this work alone and published alone two papers that embodied its resultsMurphy had no hand in the experimental episode which showed an infinitely little agent to be the cause of the tumour
By paying attention to history, some of us might empathise with Rouss agony and take comfort in our sense of dj vu, while others among us might become more sensitive directors.
The fact that a virus was an entirely new kind of entity, defying the boundary between the living and the non-living, adds much drama to the tales of RSV and bacteriophages, a drama that is captured in rich detail in A Tale of Two Viruses. If we put aside the benefit of hindsight, we can understand the incredulity of scientists and doctors of that era. They must have found it hard to imagine that an invisible substance that causes disease is not a mere protein or enzyme but rather a living agent that copied itself. I find it instructive to think how I might have fared in such a situation, which in turn makes me wonder whether I am already in a comparable situation regarding modern incredulities and future revelations.
Neeraja then takes us on a romp through the saga of the coming of age and the acceptance of bacteriophages and RSV as viruses. Neeraja is at her meticulous historical best in the chapter on bacteriophages, as this is based on her doctoral thesis. I particularly appreciated the light she shines on Frank Macfarlane Burnetswork on bacteriophages, which in my mind had been overshadowed by his Nobel Prize-winning work in immunology, predicting acquired immune tolerance and developing the theory of clonal selection. I was fascinated by Neerajas refreshingly new perspective on the role of Max Delbrck and the American. L-R: Peyton Rous, an American pathologist working at Rockefeller University in New York, 1911. Photo: Unknown; Non-Exclusive Unrestricted License, Courtesy: Olga Nilova; Frederick Twort, a medical researcher in London. Photo:Obituary Notices of Fellows of the Royal Society, Public Domain;Flix dHerelle, a kind of free-lance scientist working at the Pasteur Institute in Paris. Photo: Service photo Institut Pasteur, Public domain
Phage Group in the history of the concept of bacteriophages as viruses, especially because my previous reading had been dominated by their role in the history of molecular biology. It is just as well that the coming of age of the bacteriophages and RSV are treated in separate chapters because the contexts in which the two fields matured are so different. The way I see it, bacteriophages (along with their host bacteria, of course) played a pivotal role in establishing molecular biology on firm ground, all the way up to Francis Cricks central dogma; the dogma states that information can only flow from DNA to RNA to protein and not in reverse. Perhaps we should call this the fairy tale stage. On the other hand, RSV (along with its eukaryotic host cells, of course), with the discovery of reverse transcriptase and violation of at least one part of the central dogma, took centre stage in taking molecular biology out of the fairyland and making it real, complex, and messy.
In what she describes as her second intermezzo, Neeraja shows how the development of new technologyultracentrifugation, electron microscopy, X-Ray crystallography and morehelped the scientific community to select among previously held ideas about the nature of substances that somewhat mysteriously possessed the magical properties that define a virus. I admit to a sense of awe at what these technologies could do and how they were developed with great human ingeniousness and a running collaboration between scientists and engineers. Nevertheless, I must confess my prejudicemy greater awe at what scientists could imagine, postulate, and tease out in their minds without the aid of soon-to-be-available prosthetics. I have the greatest admiration for the developers of technology, the developers of ideas, and designers of experiments without the aid of technology, and a wee bit less for refining old ideas with new technology.
For me, one of lifes greatest pleasures is to read the older scientific literature and admire how people thought about complex issues and designed ingenious experiments, using the kind of ingeniousness that seems obsolete in the light of present-day technology. Early experiments in classical genetics using the fruit fly Drosophila melanogaster yield some of the finest examples of ingenuity untrampled by too much knowledge and too much technology, elegantly described by Richard C. Lewontin in his The Genetic Basis of Evolutionary Change (1974). I believe that this very kind of obsolete ingeniousness will be necessary for us to be creative today before the next-generation technology makes it obsolete again. I have a kind of supremacy of mind over instruments prejudice. That is why I admire more the engineers who made the instruments than the scientists who use them. My twin heroes are the engineers who make sophisticated instruments and the scientists who make do without them!
I found Neerajas chapter, Lysogeny as Linchpin, the most interesting. This must be partly because of my great love for lysogenic bacteriophages, one of which, as I described above, was the subject of my PhD thesis. But there is more. As an evolutionary biologist, I cant help admiring the smartness of lysogenic bacteriophages. The other kind, so-called lytic bacteriophages, inject their DNA or RNA into a host cell, subvert the host machinery to make more copies of themselves, burst open the host cell and escape to find more hosts. Lysogenic bacteriophages can and do all of this, but do so only if the host seems healthy enough to make this option profitable. If the host bacterium is a bit impoverished, it will lie low for a while and try later. Meanwhile, it will, of course, integrate its DNA into the host DNA so that as the host divides, all their daughters will carry a copy of its DNA the so-called prophage. When some of the bacteria appear to be in good health, the prophage will exit and switch to the lytic mode, i.e., make more copies of the bacteriophage and burst the host cell.
I have long wondered why the host carries the burden of the prophage, including the cost of replicating it in every generation, not to mention the ever-present danger that it will exit and kill it one day. Not surprisingly, there is now growing evidence that the host benefits in many ways by harbouring the prophage. One somewhat obvious advantage is that because the ability to make copies of the phage is temporarily repressed, the host is also unsuitable for making copies of other super-infecting bacteriophages that might use this cell. The prophage thus confers immunity to the host from other bacteriophages. Even more interesting is the suggestion that the prophage might help the host to tide over conditions of low nutrition. This is interesting because the death of the host also means the end of the prophage. No wonder the prophage is especially concerned about the welfare of its host in a dire situation. So much for why I love the phenomenon of lysogeny. Neerajas interest is very different but equally interesting.
In the early history of bacteriophages, the phenomenon of lysogeny appeared to be the strongest argument against the theory that bacteriophages were viruses. The Belgian microbiologist and Nobel Laureate, a staunch opponent of the virus theory of bacteriophages proposed by Twort and dHrelle, claimed that The invisible virus of dHrelle does not exist. One ground for his disbelief was that he found it impossible to imagine that the lysogenic bacteria had harboured viruses for generations without manifesting any signs of infection and that it suddenly underwent lysis due to the action of those selfsame viruses.
As Neeraja Sankaran has argued, the true meaning of lysogeny could not be fathomed by all but the most astute or the luckiest of scientists before the chemical nature of the genetic material and the basics of molecular biology were understood. In any case, after the famous Avery, MacLeod, and McCarty demonstration of DNA as the hereditary material in 1944, it became clear, especially from the work of the French microbiologist Andr Lwoff that the invisible virus does exist in the form of a prophage. It also became clear how the host cells suddenly underwent lysis due to the action of those selfsame viruses. Ironically, this clarification thus became the strongest argument in favour of the virus theory of bacteriophages. As if this were not enough, understanding that lysogenic bacteriophages remain dormant as prophages in the DNA of their host bacteria paved the way for accepting the idea that tumour viruses such as RSV could do the same by making proviruses instead of prophages. And because RSV is an RNA virus, its RNA has to be first copied into DNA before it can be integrated into the host DNA an invitation to violate the central dogma of molecular biology and the inevitable discovery of reverse transcriptase. Little wonder that Neeraja calls lysogeny the lynchpin of her tale of two viruses. I find all this incredibly beautiful and enriching.
Almost everything Neeraja Sankaran describes in A Tale of Two Viruses (not including the new knowledge she has created in retelling these tales) had already transpired before the mid-1970s. How I wish Arun and I had heard these tales while studying bacteriophages and RSV for our PhD. Rich as it was, our intellectual life would have been so much more enriched by studying the history of our study objects. I am surprised that scientists pay little more than lip service to the history of science. Personally, I find that while textbooks, monographs and research papers give me the bricks to build, only the history of science and biographies and autobiographies of scientists can provide me with the cement to glue the bricks together and construct a stable and coherent edifice. This truth is brought home to me repeatedly when I read books such as A Tale of Two Viruses by Neeraja Sankaran, The Monk in the Garden by Robin Marantz Henig, Unravelling the Double Helix by Gareth Williams, The Transforming Principle by MacLyn McCarty, Defenders of the Truth by Ullika Segerstrale, Genes, Germs and Medicine by Jan Sapp, The Atomic State by Jahnavi Phalke, to name some of my most recent pickings.
History informs practising scientists of how and why the questions and techniques they pursue came to be privileged over others and how ideas and theories rise and fall with time. Even more importantly, a historical perspective gives us a sense of purpose and a feeling that we are part of a grand narrative. It helps make the pursuit of science a hobby and a passion rather than a mere job. I believe science pursued without the benefit of the kind of historical perspective gained from reading A Tale of Two Viruses, for example, is significantly impoverished.
Lorraine Daston, director emerita at the Max Planck Institute for the Historyof Science, Berlin has argued most persuasively and with welcome provocativeness that scientists need to pay attention to the history of their discipline. She said in a recent interview:
because of the combination of the narrowness of research specialization and the intense pressure to produce results quickly, they [scientists] have no overview of their field. Or perhaps to put it more provocatively, they dont know why theyre working on what theyre working on. Moreover, they dont know what the alternatives are. The history of science has always served two purposes. One purpose has been to give that kind of orientation Heres how the field has developed; this is why it has taken this path rather than another path Another use, of course, is to prepare scientists for decisions that no science textbook can prepare them for, namely, ethical decisions.
If I complain about scientists not paying attention to history, I also sometimes complain about historians of science paying too much attention to who writes history. They make too big a deal of what they call the insider-outsider problem. I can see that those formally trained in history and teach themselves science will write a different kind of history than those formally trained in science and teach themselves how to do history. But I believe we need both types of histories unless we are fortunate to have someone like Neeraja Sankaran, who first trained as a microbiologist [BSc (Hons)], Punjab University) and later trained as a historian (PhD, Yale). Let there be more of her kind.
Raghavendra Gadagkar is a Department of Science and Technology (DST) Year of Science Chair Professor at the Centre for Ecological Sciences at the Indian Institute of Science, Bengaluru.
Read more:
More Fun Than Fun: Science Is Impoverished Without Its Tales - The Wire Science
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]