Newly identified protection mechanism serves as first responder to cellular stress – Phys.Org

June 21, 2017

Researchers at the University of Michigan Life Sciences Institute have identified a new type of rapid-response defense mechanism that helps protect cells from environmental stress while giving slower, well-known protection systems time to act.

"It's like a first responder rushing to an alarm while the larger response team mobilizes," said Natsuko Jin, a postdoctoral research fellow in the lab of LSI faculty member Lois Weisman and lead author of a study scheduled to be published June 21 in the Journal of Cell Biology.

Generally, when cells are put under stress, adaptation mechanisms kick in. They trigger transcriptional machinery and, through gene expression, the cell produces new proteins to respond to the stress and keep itself alive.

In yeast, a single-cell organism often used to study fundamental cellular biology, a much faster type of response was also observedan immediate and short-lived spike in the production of a signaling lipid that is usually seen only in miniscule quantities.

When the scientists short-circuited the yeast's ability to generate this rapid response, the yeast succumbed to an environmental stress at catastrophic rates.

"This is the first time an early protection pathway that works faster than gene expression has been identified," Jin said. "Since many of the key players have been preserved by evolution up into people and other mammals, our investigations suggest this and other types of early protection pathways may exist more broadly, and they may respond to different types of cellular stress."

For this study, the yeast were put into an environment with a high concentration of saltwhat scientists call high osmolarity. Within a few minutes, each cell responds by setting off a signaling cascade that activates a key protein kinaseHog1which travels from the cell's cytoplasm into the nucleus, where it promotes changes in gene expression. These changes in gene expression take between 30 minutes and an hour to start to have an effect, and up to two hours to be fully activated.

Meanwhile, the researchers also observed a sharp, immediate spike in a signaling lipid known as PI3,5P2, which is produced by an organelle called the vacuole in yeast. The yeast vacuole is similar to the lysosome in complex organisms.

"Within one minute you see a five-fold elevation of this lipid," said Weisman, senior author on the study and professor of cell and developmental biology at the U-M Medical School. "Within five minutes, it's a 20-fold increase. Then, without us doing anything else to the cells, it plateaus and drops off."

When regular yeast were put into this high salt, or hyperosmotic, environment for four hours, most did just fine.

When the researchers used genetic manipulation to knock out the well-known, longer-term response pathway that produces Hog1, 30 percent of the cells died.

"Still, 70 percent did just fine," Weisman said.

But when they removed the cell's ability to produce PI3,5P2, 80 percent died.

"So we know it's doing something protective before the gene expression kicks in," she said. "If they don't have it, most die."

Exactly how PI3,5P2 conveys a benefit to the cell is not yet understood, Jin said. The current study examined the upstream regulators of the signaling lipid, and demonstrated they were distinct both in time and space from the action of the Hog1 pathway.

She also said that while the observation that PI3,5P2 spikes under hyperosmotic conditions dates back to the late 1990s, its role had previously been unclear. Jin's investigation started with the desire to understand what causes the spike and what physiological role it might play.

Explore further: Yeast study yields insights into cell-division cycle

Studies using yeast genetics have provided new, fundamental insights into the cell-division cycle, researchers at the University of Michigan Life Sciences Institute report.

In multicellular animals, cells communicate by emitting and receiving proteins, a process called signaling. One of the most common signaling pathways is the transforming growth factor b (Tgf-b) pathway, which functions in ...

Control of RNA lifespan is vital for the proper functioning of our cells. Marc Bhler's group at the Friedrich Miescher Institute for Biomedical Research (FMI) has discovered a novel mechanism determining the fate of RNA ...

Although all cells in an organism have the same DNA, cells function differently based on the genes they express. While most studies of gene expression focus on activities in the cell's nucleus, a new Cornell study finds that ...

Dr. Zhi-Liang Zheng, a biology professor and plant scientist in the Department of Biological Science, published a paper last month in the Proceedings of the National Academy of Sciences (PNAS) that demonstrates a connection ...

An MIT team has used an engineering approach to show that complex biological systems can be studied with simple models developed by measuring what goes into and out of the system.

The same mechanisms that quickly separate mixtures of oil and water are at play when controlling the organization in an unusual part of our DNA called heterochromatin, according to a new study by researchers at the Department ...

Researchers at the University of Michigan Life Sciences Institute have identified a new type of rapid-response defense mechanism that helps protect cells from environmental stress while giving slower, well-known protection ...

Gelada malesa close relative to baboonspay attention to the loud calls of a rival to gain information about his relative fighting ability compared to themselves, a new study indicated.

(Phys.org)A team of researchers from South Korea, the U.K. and the U.S. has used computational methods to follow chromosomal rearrangements in seven genomes. In their paper published in Proceedings of the National Academy ...

Humans possess many cognitive abilities not seen in other animals, such as a full-blown language capacity as well as reasoning and planning abilities. Despite these differences, however, it has been difficult to identify ...

Ever burn your tongue so badly that you were unable to taste your food for a few days? Luckily, a unique feature of taste cells is that they continually regenerate every 10 to 14 days. Now, a new study from the Monell Center ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Continued here:
Newly identified protection mechanism serves as first responder to cellular stress - Phys.Org

Related Posts