Protein once thought exclusive to neurons helps some cancers grow, spread, defy death – Medical Xpress

February 21, 2017 Dr. Ping-Hung Chen, Dr. Sandra Schmid, Dr. Marcel Mettlen and other research team members determined that aggressive cancer cells adapt nerve cell mechanisms to maintain or squelch signals needed to survive and grow. Credit: UT Southwestern

How we think and fall in love are controlled by lightning-fast electrochemical signals across synapses, the dynamic spaces between nerve cells. Until now, nobody knew that cancer cells can repurpose tools of neuronal communication to fuel aggressive tumor growth and spread.

UTSouthwestern Medical Center researchers report those findings in two recent studies, one in the Proceedings of the National Academy of Sciences (PNAS) and the second in Developmental Cell

"Many properties of aggressive cancer growth are driven by altered cell signaling," said Dr. Sandra Schmid, senior author of both papers and Chair of Cell Biology at UTSouthwestern. "We found that cancer cells are taking a page from the neuron's signaling playbook to maintain certain beneficial signals and to squelch signals that would harm the cancer cells."

The two studies find that dynamin1 (Dyn1) - a protein once thought to be present only in nerve cells of the brain and spinal cord - is also found in aggressive cancer cells. In nerve cells, or neurons, Dyn1 helps sustain neural transmission by causing rapid endocytosis - the uptake of signaling molecules and receptors into the cell - and their recycling back to the cell surface. These processes ensure that the neurons keep healthy supplies at the ready to refire in rapid succession and also help to amplify or suppress important nerve signals as necessary, Dr. Schmid explained.

"This role is what the cancer cells have figured out. Aggressive cancer cells have usurped the mechanisms that neurons use for the rapid uptake and recycling of neural transmitters. Instead of neural transmitters, the cancer cells use Dyn1 for rapid uptake and recycling of EGF (epidermal growth factor) receptors. Mutations in EGF receptors are drivers of breast and lung cancers," she said of the Developmental Cell study.

In order to thrive, cancer cells must multiply faster than nearby noncancerous cells. EGF receptors help them do that, she explained.

Cancer cell survival is another factor in disease progression. In the PNAS study, the Schmid lab found that aggressive cancer cells appear to have adapted neuronal mechanisms to thwart a key cancer-killing pathway triggered by activating "death receptors" (DRs) on cancer cells. Specifically, aggressive cancer cells appear to have adapted ways to selectively activate Dyn1 to suppress DR signaling that usually leads to cancer cell death.

"It is amazing that the aggressive cancers use a signaling pathway to increase the activity of EGF and also turn on Dyn1 pathways to suppress cancer death - so you have this vicious circle," said Dr. Schmid, who holds the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology.

She stressed that less aggressive cancers respond to forms of chemotherapy that repress EGF signaling and/or die in response to the TRAIL-DR pathway. However, aggressive lung and breast cancer cells have adapted ways to commandeer the neuronal mechanisms identified in these studies.

The hope is that this research will someday lead to improved strategies to fight the most aggressive cancers, she said. Currently, her laboratory is conducting research to identify Dyn1 inhibitors as potential anticancer drugs using a 280,000-compound library in a shared facility at UTSouthwestern.

"Cancer is a disease of cell biology. To grow, spread, and survive, cancer cells modify normal cellular behavior to their advantage. They can't reinvent the underlying mechanisms, but can adapt them. In these studies, we find that some cancer cells repurpose tools that neurons use in order to get a competitive advantage over nearby normal cells," she said.

Explore further: Research suggests new possibility for treating aggressive ovarian cancer

A recent discovery by researchers from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) may lead to a new treatment strategy for an aggressive ovarian cancer subtype.

Cancer rewires the metabolism of tumor cells, converting them into lean, mean, replicating machines. But like Olympic athletes who rely on special diets to perform, tumor cells' amped-up metabolism can also make them dependent ...

The Translational Genomics Research Institute (TGen) has discovered potential drug targets to reduce pain in pancreatic cancer patients.

In the Age of Personalized Medicine, we've learned that one size doesn't fit all, least of all in cancer. Cancer is a disease of your cells, and sorting out your cancer from all others is a daunting challenge but one that ...

The fight against cancer is a marathon, fought step by step, inch by inch. While breakthroughs may be rare, a new study from the Faculty of Medicine & Dentistry is giving greater insight into the growth of cancer cells and ...

A possible cancer treatment strategy might in fact lead to increased metastasis in some cases. This finding from a team of LACDR researchers led by Erik Danen made the cover of the February 11 edition of Science Signaling.

In order for cancer to spread, malignant cells must break away from a tumor and through the tough netting of extracellular matrix, or ECM, that surrounds it. To fit through the holes in this net, those cancerous cells must ...

How we think and fall in love are controlled by lightning-fast electrochemical signals across synapses, the dynamic spaces between nerve cells. Until now, nobody knew that cancer cells can repurpose tools of neuronal communication ...

Treating multiple myeloma (MM) with myxoma virus (MYXV) eliminated a majority of malignant cells in preclinical studies, report investigators at the Medical University of South Carolina (MUSC) and elsewhere in an article ...

Researchers at the University of Pittsburgh School of Medicine have uncovered a novel genetic mechanism of thyroid cancer, as well as a marker that may predict response to a particular class of drugs, not just in patients ...

A Michigan State University breast cancer researcher has shown that effective treatment options can be predicted based on the way certain breast cancer genes act or express themselves.

Having high levels of a certain biomarker is linked to poor prognosis in African-American patients with triple-negative breast cancer, while the same biomarker doesn't influence disease outcomes in white patients, according ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more here:
Protein once thought exclusive to neurons helps some cancers grow, spread, defy death - Medical Xpress

Related Posts