A research team led by Dr Chaogu ZHENG from the School of Biological Sciences at the University of Hong Kong (HKU) has made a significant discovery about the evolutionary age of different type of cells in a small animal calledCaenorhabditis elegans (C. elegans). By using single-cell transcriptomic data and refined phylostratigraphy, the team determines the transcriptomic age of individual cells, which means they are able to estimate the evolutionary origin of different cells based on the age of the genes expressed in the cells.
Their findings shed light on the cellular basis of the hourglass pattern of animal development, revealing significant variation in the transcriptome age of different cell types. These results also provide insights into the varying contribution of different cells and tissues to adaptation, and the evolutionary relationship among cell types. These findings offer new perspectives on the genetic mechanisms that drive the evolution of species and have been published in the leading multidisciplinary journalPNAS.
Insights from Molecular Studies on Hourglass ModelThe embryos of all animals share similar morphology at the middle stage of embryonic development while having larger morphological divergence at earlier and later stages. This pattern is often referred to as the hourglass pattern of development, meaning that all animal development experiences an evolutionarily conserved phase during mid-embryogenesis.
Recent molecular studies have shown that embryos at the middle stage of embryogenesis express the oldest transcriptome, which means that the oldest and most conserved genes are used at this stage during gene expression. In contrast, younger genes are expressed in the earlier and later stages of embryonic development. This was discovered by analysing gene expression of the embryos in different developmental stages using a technique called phylostratigraphy, a method used to determine gene ages by comparing their sequences across different species.
However, these studies are limited in that they could only determine the transcriptome age of the entire organism throughout development but not in individual cells or tissue. This limitation is significant because obtaining information about the age of genes expressed in specific cells and tissue is crucial for gaining a more detailed understanding of the evolution of developmental patterns among species, as well as the genetic mechanismsdriving it. Additionally, it can shed light on how individual tissue and cells contribute to the hourglass pattern, which is a crucial aspect of understanding how different organs and tissues contribute to the evolution and adaptation of the overall developmental process in animals.
From Whole-Organism to Single-Cell AnalysisTo fill this knowledge gap, the research team studies the transcriptome age of the nematodeC. elegansat the single cell level using RNA sequencing. They look at RNA expression from both whole embryos (or organism) and individual cells to gain a comprehensive understanding of how different genes are used during embryonic and larval development.
The team first identifies a period of the oldest transcriptome duringC. elegansmid-embryogenesis, which starts after gastrulation, a process that forms different germ layers in the embryo and continues into the early development of an organ. More importantly, the research team finds that in early embryos, certain cells used older genes than other cells. For example, cells that would later become the germline (which is responsible for passing on genetic information to offspring) use older genes than somatic tissues in the body. Similarly, cells that would later become the endoderm (which gives rise to the digestive tract) use older genes compared to other cell types during early development. Among differentiated cells, muscles appear to have the oldest transcriptome than other cell types.
It is also observed that the variation in transcriptome ages among the cell and tissue types remain small in early embryonic stages and grow bigger at late embryonic and larval stages as cells differentiate. Tracking the dynamics of transcriptome age along lineages identifies certain tissues, such as the skin, that contribute to the rise of the transcriptome age in late embryos.
Further analysis of the variation in transcriptome ages among the 128 different types of neurons inC. elegansnervous system reveals that a specific group of chemosensory neurons and their downstream interneurons express very young transcriptomes, which may have contributed to adaptation in recent evolution, as many newly evolved young genes are associated with sensing environmental factors. Finally, by analysing the variation in transcriptome age among the different neuron types, as well as the age of the genes that regulate their development (fate regulators), the research team is able to hypothesize about the evolutionary history of some of these 128 neuron types.
UsingC. elegansas an example, we showcase how the transcriptome age at the single-cell level can provide insight into the cellular basis of developmental innovation and help understand the functional diversity and evolutionary origin of cell types, said Dr Fuqiang MA, a Postdoctoral Fellow of HKU School of Biological Sciences and the first author of the paper.
Dr Zheng, the supervisor of the research project, highlighted that this study serves as an example of using the cutting-edge single-cell transcriptomics to study old problems in evolutionary biology. Dr Zheng envisions that the possibility of determining the evolutionary age of individual cell types at the transcriptome level can open up new research directions and advance our understanding of the genetic mechanisms that drive the evolution of species.
About the research paper:Ma F, Zheng C. Transcriptome age of individual cell types in Caenorhabditis elegans.Proc Natl Acad Sci U S A.2023 Feb 28;120(9):e2216351120. doi: 10.1073/pnas.2216351120.
The journal paper can be accessed from here:www.pnas.org/doi/10.1073/pnas.2216351120
This work is supported by funding from the National Science Foundation of China, the Research Grant Council of Hong Kong, and The University of Hong Kong.
Images download and captions:https://www.scifac.hku.hk/press
For media enquiries, please contact Ms Casey To, External Relations Officer (Tel: 3917-4948; email:caseyto@hku.hk) and Ms Cindy Chan, Assistant Communications Director of Faculty of Science (Tel: 3917-5286; email:cindycst@hku.hk).
Proceedings of the National Academy of Sciences
Meta-analysis
Cells
Transcriptome age of individual cell types in Caenorhabditis elegans
22-Feb-2023
Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.
Original post:
Providing critical insights for animal development - HKU biologists ... - EurekAlert
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]
- Mendus redeems the outstanding convertible bonds from Negma ... - GlobeNewswire - April 8th, 2023 [April 8th, 2023]