May 25, 2017 Researchers at Howard Hughes Medical Institute developed a way to produce color-tagged, 3D, microscopic videos of organelles in a live cell. They came to Drexel's Andrew Cohen, PhD, to develop an algorithm that could process massive amounts of visual data to better understand the behavior of organelles as a group and individually. This technology will help them unlock cell behavior and response to drug treatment. Credit: Drexel University
Researchers at Howard Hughes Medical Institute and the Eunice Kennedy Shriver National Institute for Child Health and Human Development are getting a first glimpse at the inner-workings of live cells thanks to a new microscopy technique pioneered by Nobel laureate Eric Betzig with help from engineers at Drexel University. Their method uses grids of light that activate fluorescent color tags on each type of organellethe result is a 3-D video that gives researchers their best look at how cells function. It will allow scientists to better understand how cells react to environmental stressors and respond to drug treatment.
In a paper published today in Nature, the team lays out its methodology for using Betzig's lattice light sheet microscope in combination with image-tracking technology developed in Drexel's Computational Image Sequence Analysis Lab, led by Andrew Cohen, PhD, to produce 3-D time lapse videos of organelle movement and generate quantitative data on their interactions.
"The cell biology community has recognized for many years that the cytoplasm is full of many different types of organelles, and the field is recognizing more and more how significant cross-talk between these organelles is in the form of close contacts between these organelles," said Jennifer Lippincott-Schwartz, PhD, of HHMI's Janelia Research Campus, and senior author of the study. "When two organelles come close to each other they can transfer small molecules like lipids and calcium and communicate with each other through that transfer. But no one has been able to look at the whole set of these interactions at any particular time. This technology is providing a way to do that. But this paper is about a whole new technology, being able to tag six different objects with six different fluorophores, and unmixing the fluorophores so that you can observe the six different objects discretely."
Betzig's microscopy technique uses layers of light grids that interact with fluorescent protein-tagged cells to build a 3D microscopic image. At Janelia Research Campus, Betzig and Lippincott-Schwartz have refined that technology to produce a detailed look inside the cell by tagging each organelle type with its own color.
"The challenge is analyzing this data," Lippincott-Schwartz said. "It requires being able to simultaneously track these six different objects in 3D. What Andy Cohen and his group have done with the software system they have developed is enable us to really look at this in more quantitative ways than would be possible with conventional tools."
The video will load shortly
Cohen's lab developed a tool called LEVER 3-D in 2015 to help researchers study 3-D images of neural stem cells. It applies an advanced image segmentation algorithm they developed that can identify boundaries of cells and track their movements. Prior to this technology being available to microbiologists, the processing of microscopic images and time-lapse footage would take massive amounts of time because they would have to create lineage trees by hand and attempt to follow cell changes by making their own observations when comparing images.
This process is even more involved when multiple objects are being tracked in three dimensions. Lippincott-Schwartz's group used a battery of computer programs to filter out all the different pieces of light spectra emitted by the organelles, to begin to bring the 3-D images and video into focus. The process, called "linear unmixing," required more than 32 cores of a computer work station to sift through 7 billion sets of six-color images, pixel by pixel.
Typically they would use expensive commercial software programs to stitch them into a 3-D volume to go about studying them. But these programs are expensive and time-consuming to use, and were not capable of the sophisticated analysis for tracking moving objects in order to make quantitative measurements of their behaviors and particularly how they interact.
Cohen's algorithm automates the entire process, which saves researchers a lot of time and it also lets them ask and answer more questions about what the cells are doing. He further verified the data by working with Drexel colleague Uri Herschberg, PhD, an associate professor in the School of Biomedical Engineering, Science and Health Systems and College of Medicine, to check it against 2-D images of the cells.
"It's some really impressive footage that gives biologists this ability to look deeper and deeper into live cells and see things they've never seen beforelike six different organelles in a living cell in true 3-D," said Cohen, a professor in Drexel's College of Engineering. "But it's also a lot of work to begin quantifying what they're seeingand that's where we can help, by using our program to automate big portions of that process and glean valuable data from it."
The video will load shortly
Using the new technology to simultaneously look at six sets of organelles, Lippincott-Schwartz's teams at Janelia and at the National Institutes of Health are making exciting new observations. They are looking at how the organelles distribute themselves inside the cell, how often they interact with each other and where, when and how fast they move during various times in the cell's lifecycle.
"One very interesting outcome is that we found the largest organelle in the cell, which is the ER [endoplasmic reticulum], at any particular time point will be occupying about 25 percent of the volume of the cytoplasm, excluding the nucleus. But if you track the way it disperses through the cytoplasm over a short period of time, like 15 minutes, you see that it explores 95 percent of the whole cytoplasm during that time period," Lippincott-Schwartz said. "We can do this for all of the other organelles at the same time to see how the cytoplasm is being sensed through the dynamic motions of dispersive activities of these organelles."
Observing sub-cellular behavior is just the first application of this technology. Now that it has proven to generate usable data, the team will forge ahead to study what happens inside a cell when it is exposed to drug treatments and other common stresses on the system. The researchers suggest that it could be used to study many more than six types of microscopic objects. And it could help dig even deeper into the building blocks of lifeinto interactions of RNA particles and other proteins that play a role in a cell's function and the behavior of diseased cells.
"As these tools continue to improve they will give researchers both a better look at cell behavior and many options for gathering and analyzing that data," Cohen said. "They will be able to ask and answer increasingly complicated questions and that's going to lead to some very exciting and important discoveries."
Explore further: How plant cell compartments change with cell growth
More information: Alex M. Valm et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome, Nature (2017). DOI: 10.1038/nature22369
Journal reference: Nature
Provided by: Drexel University
A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of subcellular organelles ...
(Phys.org)A team of researchers from the U.S. and the U.K. has used high-resolution imaging techniques to get a closer look at the endoplasmic reticulum (ET), a cellular organelle, and in so doing, has found that its structure ...
For hundreds of years biologists have studied cells through the lens of a microscope. With a little help from a team of engineers at Drexel University, these scientists could soon be donning 3-D glasses in a home-theater-like ...
The first analysis of how proteins are arranged in a cell was published today in Science, revealing that a large portion of human proteins can be found in more than one location in a given cell.
Scientists have made a breakthrough in understanding how different compartments (or organelles) of human cells interact.
For the first time, chemists have successfully produced an artificial cell containing organelles capable of carrying out the various steps of a chemical reaction. This was done at the Institute for Molecules and Materials ...
Mountain-dwelling East African honey bees have distinct genetic variations compared to their savannah relatives that likely help them to survive at high altitudes, report Martin Hasselmann of the University of Hohenheim, ...
A baby's babbles start to sound like speech more quickly if they get frequent vocal feedback from adults. Princeton University researchers have found the same type of feedback speeds the vocal development of infant marmoset ...
A team of researchers, led by a plant cell biologist at the University of California, Riverside, has for the first time identified a small RNA species and its target gene that together regulate female germline formation in ...
Researchers at the University of Iowa have discovered that a molecule which can sense the swelling of fat cells also controls a signaling pathway that allows fat cells to take up and store excess glucose. Mice missing this ...
Beekeepers across the United States lost 33 percent of their honey bee colonies during the year spanning April 2016 to April 2017, according to the latest preliminary results of an annual nationwide survey. Rates of both ...
Living cells must constantly process information to keep track of the changing world around them and arrive at an appropriate response.
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
Visit link:
Researchers help provide first glimpse of organelles in action inside living cells - Phys.Org
- Bristol researcher awarded Women in Cell Biology Early Career Medal 2025 - University of Bristol - December 23rd, 2024 [December 23rd, 2024]
- Simple and effective embedding model for single-cell biology built from ChatGPT - Nature.com - December 9th, 2024 [December 9th, 2024]
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]