June 13, 2017 Credit: The Scripps Research Institute
Scientists at The Scripps Research Institute (TSRI) have solved a cellular mystery that may have important implications for fundamental biology and diseases like ALS. Their new research suggests that RNA may be the secret ingredient that helps cells to assemble, organize internal architecture, and ultimately dissolve dynamic droplet-like compartments.
These droplet-like structures are commonly known as membraneless organelles, and they are key to how cells compartmentalize their biochemistry and regulate processes such as gene expression and response to stress.
For 200 years, scientists have known of the existence of membraneless organelles in cells and wondered how they are regulated. Recent studies suggested that increasing the fraction of RNA can lead to the formation of protein-RNA droplets by a process called liquid-liquid phase separation.
"It is basically the same type of immiscibility phenomenon that drives oil to form droplets in water," said TSRI Associate Professor Ashok Deniz, who co-led the study published recently in the journal Angewandte Chemie as a Very Important Paper (VIP). "While several weak biomolecular forces collectively result in protein-RNA droplet formation, we focused on one particular type in this study: electrostatic interactions driven by oppositely charged biomolecules. A major discovery was that further increase in RNA concentration can dissolve these droplets, bringing back a homogeneous liquid phase."
The speed at which these droplets form and dissolve may be key to cellular survival. "Droplets can form and dissolve as they are needed, which allows cells to adapt very quickly to cellular stress," said Research Associate Priya Banerjee, who co-led the study and served as co-first author with graduate students Anthony N. Milin and Mahdi Muhammad Moosa of TSRI.
The new study suggests that the negative charge of RNA molecules is a key to both creating and dissolving droplets. "RNA is like a double agent," said Banerjee.
How Droplets Form and Disappear
RNA has an overall negative charge. When it initially comes in contact with positively-charged proteins, the oppositely charged molecules attract each other. Together, they create a molecular assembly and form liquid droplets. These droplets allow cells to carry out important functions.
The researchers also found that droplets will quickly dissolve when one increases RNA in the system.
"Adding more RNA to this system disrupts the fine balance between negative and positive charges, leading to the formation of negatively-charged assemblies that now repel each other, thus dissolving the droplet," said study co-author Paulo L. Onuchic, a graduate student in the Deniz Lab.
The video will load shortly
This unique finding sheds light on an unexpected regulatory pathway. The research also challenges the previous conception that biomolecular forces that create droplets should be reversed to dissolve them. Instead of reversing the processthrough either removal of RNA or posttranslational modification of the protein to destroy its positive chargethe researchers found that the system can simply add more RNA to dissolve a droplet.
"The window-like behavior of droplet formation as a function of RNA concentration observed here exhibits a unidirectional route that can be exploited by cells using processes such as transcription," said Banerjee.
In further experiments, the team demonstrated that RNA synthesis by cellular machineries indeed forms and dissolves these droplets.
Creating "Hollow" Droplets
The fact that RNA can dissolve droplets gave the researchers a unique chance to control RNA addition and watch the dissolution process. "To our surprise, instead of a simple process of droplet dissolution, we observed hollow spheres forming inside droplets. Taking a step back, you see that by adding more RNA, we are creating low-density droplets inside high-density droplets," said Deniz.
Deniz compared this phenomenon to an ice cube melting from the inside. Interestingly, these internal droplets, called vacuoles, resemble the complex internal substructures that are typically observed in a number of cellular droplet-like organelles.
"The key to creating vacuoles is this unidirectional transition from an initial homogeneous liquid to two immiscible liquid phases and back to a homogeneous phase just by increasing the fraction of RNA," added Banerjee.
The team went on to test whether these findings would apply to a key protein found in stress-granules, important "droplet" organelles that protect cells during stress. They investigated an RNA-binding protein called FUS, which has been implicated in ALS.
"With FUS, we found that RNA can both form and dissolve droplets in the same fashion as the simpler model system. Remarkably, FUS droplets also exhibited complex internal substructures, which paves the way for ascertaining the biological role of these vacuoles," said Milin.
While this research is still in its early stages, the researchers believe mutations in FUS may interfere in the normal droplet dynamics in some patients with ALS, possibly stopping their cells from coping properly with cellular stress.
The work opens a number of avenues for future research in cell biology and disease, including quantitative studies of this specific type of phase transition in other biological systems, understanding the molecular determinants in proteins and RNA that control the droplet dynamics, and further studies of complex patterning of droplets.
Explore further: Acetone experiences Leidenfrost effect, no hotplate needed
More information: Priya R. Banerjee et al. Reentrant phase transition drives dynamic substructure formation in ribonucleoprotein droplets, Angewandte Chemie International Edition (2017). DOI: 10.1002/anie.201703191
In doing his due diligence, cleaning his lab equipment, fluid physicist Stoffel Janssens from the Mathematical Soft Matter Unit in the Okinawa Institute of Science and Technology (OIST), Okinawa, Japan, took notice of the ...
Liquid-like droplets are highly dynamic cytoplasmic aggregates of proteins with no apparent structure. Over the last two years they have attracted considerable attention due to their key functions in the cell and their relation ...
As interest and demand for nanotechnology continues to rise, so will the need for nanoscale printing and spraying, which relies on depositing tiny drops of liquid onto a surface. Now researchers from Tsinghua University in ...
Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...
Researchers at the University of Tokyo have shown that in phase separation in liquids, as is seen when oil and water separate, occurs as a result of the ordered motion of droplets. Initially, a great number of small droplets ...
For most people, the drip, drip, drip of a leaking faucet would be an annoyance. But for Georgia Institute of Technology Ph.D. candidate Alexandros Fragkopoulos, what happens inside droplets is the stuff of serious science.
Producing semiconductor lasers on a silicon wafer is a long-held goal for the electronics industry, but their fabrication has proved challenging. Now, researchers at A*STAR have developed an innovative way to manufacture ...
Developing a superconducting computer that would perform computations at high speed without heat dissipation has been the goal of several research and development initiatives since the 1950s. Such a computer would require ...
Scientists at The Scripps Research Institute (TSRI) have solved a cellular mystery that may have important implications for fundamental biology and diseases like ALS. Their new research suggests that RNA may be the secret ...
Chemical reactions necessarily involve molecules coming together, and the way they interact can depend on how they are aligned relative to each other. By knowing and controlling the alignment of molecules, a great deal can ...
The scientific community has known about the existence of electrons for over a hundred years, but there are important facets of their interaction with matter that remain shrouded in mystery. One particular area of interest ...
A multi-institutional team led by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered a way to create new alloys that could form the basis of next-generation semiconductors.
Please sign in to add a comment. Registration is free, and takes less than a minute. Read more
More here:
Scientists solve a mystery in cellular 'droplet' organelles - Phys.org - Phys.Org
- Distinguished investigator brings expertise in genetics and cell biology to Texas A&M AgriLife - AgriLife Today - October 26th, 2024 [October 26th, 2024]
- Institute of Molecular and Cell Biology (IMCB) - Agency for Science, Technology and Research (A*STAR) - October 13th, 2024 [October 13th, 2024]
- Joseph Gall, father of modern cell biology, dead at 96 - Carnegie Institution for Science - September 15th, 2024 [September 15th, 2024]
- A dual role of ERGIC-localized Rabs in TMED10-mediated unconventional protein secretion - Nature.com - June 27th, 2024 [June 27th, 2024]
- Yoshihiro Yoneda Appointed President of the International Human Frontier Science Program Organization - PR Newswire - June 27th, 2024 [June 27th, 2024]
- A new way to measure ageing and disease risk with the protein aggregation clock - EurekAlert - June 18th, 2024 [June 18th, 2024]
- How Flow Cytometry Spurred Cell Biology - The Scientist - June 18th, 2024 [June 18th, 2024]
- Building Cells from the Bottom Up - The Scientist - June 18th, 2024 [June 18th, 2024]
- From Code to Creature - The Scientist - June 18th, 2024 [June 18th, 2024]
- Adding intrinsically disordered proteins to biological ageing clocks - Nature.com - May 24th, 2024 [May 24th, 2024]
- Advancing Cell Biology and Cancer Research via Cell Culture and Microscopy Imaging Techniques - Lab Manager Magazine - May 24th, 2024 [May 24th, 2024]
- Study explores how different modes of cell division evolved in close relatives of fungi and animals - News-Medical.Net - May 24th, 2024 [May 24th, 2024]
- Solving the Wnt nuclear puzzle - Nature.com - May 24th, 2024 [May 24th, 2024]
- Prof. Jay Shendure Joins Somite Therapeutics as Scientific Co-founder - BioSpace - May 24th, 2024 [May 24th, 2024]
- One essential step for a germ cell, one giant leap for the future of reproductive medicine - EurekAlert - May 24th, 2024 [May 24th, 2024]
- May: academy-medical-sciences | News and features - University of Bristol - May 24th, 2024 [May 24th, 2024]
- Universal tool for tracking cell-to-cell interactions - ASBMB Today - May 24th, 2024 [May 24th, 2024]
- Close Encounters of Skin and Nerve Cells - The Scientist - April 15th, 2024 [April 15th, 2024]
- OrthoID: Decoding Cellular Conversations with Cutting-Edge Technology - yTech - April 15th, 2024 [April 15th, 2024]
- Impact of aldehydes on DNA damage and aging - EurekAlert - April 15th, 2024 [April 15th, 2024]
- Redefining Cell Biology: Nondestructive Genetic Insights With Raman Spectroscopy - SciTechDaily - March 29th, 2024 [March 29th, 2024]
- Scientists Unravel the Unusual Cell Biology Behind Toxic Algal Blooms - SciTechDaily - March 19th, 2024 [March 19th, 2024]
- Ancient retroviruses played a key role in the evolution of vertebrate brains - EurekAlert - February 21st, 2024 [February 21st, 2024]
- Singapore scientists uncover a crucial link between cholesterol synthesis and cancer progression - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Scientists uncover a way to "hack" neurons' internal clocks to speed up brain cell development - News-Medical.Net - February 4th, 2024 [February 4th, 2024]
- First atomic-scale 'movie' of microtubules under construction, a key process for cell division - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Small RNAs take on the big task of helping skin wounds heal better and faster with minimal scarring - EurekAlert - February 4th, 2024 [February 4th, 2024]
- Shengjie Feng channels the powers of cryogenic electron microscopy - Newswise - January 19th, 2024 [January 19th, 2024]
- Study pinpoints breast cancer cells-of-origi - EurekAlert - January 19th, 2024 [January 19th, 2024]
- New analysis of cancer cells identifies 370 targets for smarter, personalized treatments - News-Medical.Net - January 19th, 2024 [January 19th, 2024]
- EU funding for pioneering research on the treatment of gliomas - EurekAlert - January 19th, 2024 [January 19th, 2024]
- The future of mRNA biology and AI convergence - Drug Target Review - December 22nd, 2023 [December 22nd, 2023]
- The future of artificial breast milk, according to one lab - Quartz - December 22nd, 2023 [December 22nd, 2023]
- Shedding new light on the hidden organization of the cytoplasm - News-Medical.Net - December 22nd, 2023 [December 22nd, 2023]
- Bugs that help bugs: How environmental microbes boost fruit fly reproduction - EurekAlert - December 22nd, 2023 [December 22nd, 2023]
- Cells Move in Groups Differently Than They Do When Alone - NYU Langone Health - December 14th, 2023 [December 14th, 2023]
- Cells move in groups differently than they do when alone - EurekAlert - December 14th, 2023 [December 14th, 2023]
- Seattle Hub for Synthetic Biology plans to transform cells into tiny recording devices - GeekWire - December 14th, 2023 [December 14th, 2023]
- Virginia Tech and Weizmann Institute of Science tackle cell ... - Virginia Tech - October 16th, 2023 [October 16th, 2023]
- Vast diversity of human brain cell types revealed in trove of new ... - Spectrum - Autism Research News - October 16th, 2023 [October 16th, 2023]
- Singamaneni to develop advanced protein imaging method - The ... - Washington University in St. Louis - October 16th, 2023 [October 16th, 2023]
- Researchers find certain cancers can activate 'enhancer' in the ... - University of Toronto - October 16th, 2023 [October 16th, 2023]
- 2023 Hettleman Prizes awarded to five exceptional early-career ... - UNC Research - October 16th, 2023 [October 16th, 2023]
- Faeth Therapeutics Announces National Academy of Medicine ... - BioSpace - October 16th, 2023 [October 16th, 2023]
- From Migrant Farm Worker to Duke Scientist, Everardo Macias ... - Duke University School of Medicine - October 16th, 2023 [October 16th, 2023]
- Finding the golden ticket? Cyclin T1 is required for HIV-1 latency ... - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Spermidine May Improve Egg Health and Fertility - Lifespan.io News - October 16th, 2023 [October 16th, 2023]
- Molecule discovered that grows bigger and stronger muscles - Earth.com - October 16th, 2023 [October 16th, 2023]
- SGIOY: 3 Biotech Stocks With Potential Future Gains - StockNews.com - October 16th, 2023 [October 16th, 2023]
- Association for Molecular Pathology Publishes Best Practice ... - Technology Networks - October 16th, 2023 [October 16th, 2023]
- A new cell type with links to gastric cancer steps up for its mugshot - Fred Hutch News Service - October 16th, 2023 [October 16th, 2023]
- Programmed cell death may be 1.8 billion year - EurekAlert - October 16th, 2023 [October 16th, 2023]
- New study confirms presence of flesh-eating and illness-causing ... - Science Daily - October 16th, 2023 [October 16th, 2023]
- New Institute for Immunologic Intervention (3i) at the Hackensack ... - Hackensack Meridian Health - October 16th, 2023 [October 16th, 2023]
- Post-doctoral Fellow in Cancer Biology in the Department of ... - Times Higher Education - October 16th, 2023 [October 16th, 2023]
- Scientists uncover key enzymes involved in bacterial pathogenicity - News-Medical.Net - October 16th, 2023 [October 16th, 2023]
- B cell response after influenza vaccine in young and older adults - EurekAlert - October 16th, 2023 [October 16th, 2023]
- Post-doctoral researcher in yeast cell biology job with UNIVERSITY ... - Times Higher Education - April 8th, 2023 [April 8th, 2023]
- expert reaction to study looking at creating embryo-like structures ... - Science Media Centre - April 8th, 2023 [April 8th, 2023]
- UCF Bone Researcher Receives National Recognition - UCF - April 8th, 2023 [April 8th, 2023]
- PhenomeX to Participate in American Association of Cancer ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Inland Empire stem-cell therapy gets $2.9 million booster - UC Riverside - April 8th, 2023 [April 8th, 2023]
- New finding in roundworms upends classical thinking about animal cell differentiation - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Biology's unsolved chicken-or-egg problem: Where did life come from? - Big Think - April 8th, 2023 [April 8th, 2023]
- Azacitidine in Combination With Trametinib May Be Effective for ... - The ASCO Post - April 8th, 2023 [April 8th, 2023]
- Researchers clear the way for well-rounded view of cellular defects - Phys.org - April 8th, 2023 [April 8th, 2023]
- We were dancing around the lab cellular identity discovery has potential to impact cancer treatments - Newswise - April 8th, 2023 [April 8th, 2023]
- Environmental stressors' effect on gene expression explored in lecture - Environmental Factor Newsletter - April 8th, 2023 [April 8th, 2023]
- RNA therapy restores gene function in monkeys modeling ... - Spectrum - Autism Research News - April 8th, 2023 [April 8th, 2023]
- Traumatic brain injury interferes with immune system cells' recycling ... - Science Daily - April 8th, 2023 [April 8th, 2023]
- Lab-grown fat could give cultured meat real flavor and texture - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Researchers reveal mechanism of polarized cortex assembly in migrating cells - Phys.org - April 8th, 2023 [April 8th, 2023]
- Probing Selfish Centromeres Unveils an Evolutionary Arms Race - The Scientist - April 8th, 2023 [April 8th, 2023]
- Meet the 2023 Outstanding Graduating Students - UMaine News ... - University of Maine - April 8th, 2023 [April 8th, 2023]
- The Worlds Sexiest Fragrance Unveiled, But Its Not For You - Revyuh - April 8th, 2023 [April 8th, 2023]
- City of Hope appoints John D. Carpten, Ph.D., as director of its ... - BioSpace - April 8th, 2023 [April 8th, 2023]
- Modernized Algorithm Predicts Drug Targets for SARS-CoV-2, Other ... - GenomeWeb - April 8th, 2023 [April 8th, 2023]
- BU researcher wins $3.9 million NIH grant to develop novel therapeutic modalities for Alzheimer's - News-Medical.Net - April 8th, 2023 [April 8th, 2023]
- Providing critical insights for animal development - HKU biologists ... - EurekAlert - April 8th, 2023 [April 8th, 2023]
- Students Express Frustrations About the Middle Class Scholarship - The Triton - April 8th, 2023 [April 8th, 2023]